Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bewegte Alpen: Neue Erkenntnisse zur Geologie zwischen Innsbruck und Wiener Becken

08.06.2010
Seit kurzem gibt es den ersten handfesten geologischen Beweis, dass die Ostalpen immer noch in Bewegung sind. Die 400 Kilometer lange Störungszone − die sogenannte SEMP-Störung − zwischen Innsbruck und dem Wiener Becken ist tektonisch nach wie vor aktiv.

Ausgangspunkt für diese bedeutsame Erkenntnis waren ein paar − für den Laien völlig unscheinbare − Kratzer im Kalksinter einer steirischen Höhle. Bernhard Grasemann und Kurt Decker vom Department für Geodynamik und Sedimentologie der Universität Wien sowie Lukas Plan vom Naturhistorischen Museum haben zusammen mit Kollegen aus Innsbruck und Bern in der Juni-Ausgabe der Zeitschrift "Geology" dazu publiziert.

Eine der großen Bewegungslinien der Alpen – die SEMP-Störung (Salzach-Ennstal-Mariazell-Puchberg-Störung) – ist nach wie vor aktiv. Dabei handelt es sich um eine 400 Kilometer lange Störungszone von Innsbruck bis zum Wiener Becken. "Ich entdeckte vor ein paar Jahren in einer Höhle am Hochschwab in der Steiermark zufällig 25 Zentimeter lange Kratzer im Sinter", schildert der Geologe Lukas Plan, ehemaliger Dissertant von Bernhard Grasemann, die Ausgangssituation.

Um eine Erklärung für die zerkratzte Höhlenwand zu finden, führte Plan zusammen mit Kollegen vom Department für Geodynamik und Sedimentologie der Universität Wien sowie den Universitäten Innsbruck und Bern eine Reihe von Messungen und Untersuchungen durch. Die Ergebnisse der jahrelangen, logistisch sehr aufwändigen Forschungsarbeit wurden vor kurzem in der Fachzeitschrift "Geology" publiziert: Sie liefern den ersten geologischen Feldbeweis für neotektonische Aktivität in den Ostalpen und belegen, dass es in Österreich nach wie vor zu größeren Erdbeben kommen kann.

Erdbeben vor tausenden Jahren

"Unsere Beobachtungen haben ergeben, dass sich der gesamte Höhlengang um 25 Zentimeter bewegt haben muss", so Lukas Plan. Heruntergefallene Blöcke und Tropfsteine wurden durch die Bewegung der Störung mitgeschleift und haben auf diese Weise die Kratzer bewirkt. Aufgrund wiederholter Sinterablagerungen auf diesen Kratzern konnten die Forscher anhand geochronologischer Methoden den Zeitpunkt der tektonischen Bewegung eingrenzen. "Im Zeitraum zwischen 118.000 und 9.000 Jahren vor heute wurde die Höhle von einer tektonischen Störung, einer sogenannten Blattverschiebung zerschert", erklärt Bernhard Grasemann, Leiter des Departments für Geodynamik und Sedimentologie der Universität Wien: "Höchstwahrscheinlich war es ein Erdbeben der Stärke sechs, das zu dem Versatz von 25 Zentimetern geführt hat", fährt Lukas Plan fort. Ob es wirklich ein Erdbeben, ein langsames Schieben oder sogar eine Summe von Erdbeben war, werden die Geologen nun weiter untersuchen.

Eiszeit hat Erdbebenspuren in den Alpen verwischt

"Der Fund ist vor allem deshalb so interessant, weil es in Österreich keine direkten Zeugen für aktive Störungen an der Erdoberfläche gibt", betont Grasemann. Die letzte Eiszeit vor rund 115.000 bis 10.000 Jahren hat den Alpenkörper durch eine mächtige Eisbedeckung überformt und somit alle möglichen Spuren verwischt. Die Eiszeit ist auch der Grund, warum das Zeitintervall, in dem die tektonische Störung angesiedelt wird, so groß ist: "In der 1.900 Meter hoch gelegenen Höhle war zu jener Zeit alles gefroren, weshalb sich auch kein Sinter ablagern konnte. Andernfalls könnten wir die Bewegung auf wenige 100 Jahre einengen", erklärt Lukas Plan.

Nach Osten wandernd

Vor 25 Millionen Jahren begann ein keilförmiger Block südlich dieser Störung Richtung Osten zu wandern. "Da die Störung in der Höhle parallel zu der SEMP-Störung liegt, können wir einerseits belegen, dass unsere Störung Teil der SEMP-Störung ist, und andererseits, dass hier immer noch tektonische Aktivität herrscht", sagt Plan. GPS-Messungen bestätigen dies: Der Keil – dessen Nordbegrenzung die SEMP-Störung darstellt – bewegt sich um 1,6 Millimeter pro Jahr Richtung Osten.

Geologische Dimensionen

"Unter den Begriff 'aktive Tektonik' fallen alle Bewegungen oder Deformationen von Gestein, die die Menschheit direkt beeinflussen", definieren die beiden Geologen. Da oftmals tausende Jahre vergehen, bis sich solche Störungen wiederholen bzw. eine Störung Spannung aufbaut, die sich durch ein Erdbeben wieder entlädt, geht man dabei bis zu zwei Millionen Jahre zurück. "Die Störung am Hochschwab war also – geologisch gesehen – erst gestern", betont Grasemann abschließend.

Publikation:
Geology: Lukas Plan, Bernhard Grasemann, Christoph Spötl, Kurt Decker, Ronny Boch, Jan Kramers: Neotectonic extrusion of the Eastern Alps: Constraints from U/Th dating of tectonically damaged speleothems.
Kontakt:
Univ.-Prof. Mag. Dr. Bernhard Grasemann
Leiter des Departments für Geodynamik und Sedimentologie
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-534 72
bernhard.grasemann@univie.ac.at
http://geologie.univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://geologie.univie.ac.at
http://geology.gsapubs.org/content/38/6/483.abstract

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise