Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bessere Vorhersage von Oberflächenströmungen

28.04.2015

Im Journal of Atmospheric and Oceanic Technology stellen Wissenschaftler des Instituts für Küstenforschung am Helmholtz-Zentrum Geesthacht ein neues Verfahren zur Datenanalyse vor, das es ermöglicht, Oberflächenströmungen in der Deutschen Bucht genauer abzuschätzen. Die Arbeit ist in Kooperation mit dem Institut für Ozeanographie der Universität Hamburg entstanden und kann in der Praxis vor allem die Planung von Maßnahmen im Fall von Katastrophen verbessern.

Bisher wurden Oberflächenströmungen im Wesentlichen mit mathematischen Modellen analysiert. Aufgrund der unzureichenden Datenlage konnte nur in wenigen Fällen überprüft werden, inwieweit die Modelle korrekte Ergebnisse liefern.


Radarstation auf Sylt

Die Situation hat sich geändert, seitdem das Institut für Küstenforschung des Helmholtz-Zentrums Geesthacht in der Deutschen Bucht drei sogenannte Hochfrequenzradargeräte als Teil des COSYNA-Messsystems auf Wangerooge und Sylt sowie in Büsum installiert hat.

Radarsystem mit hoher zeitlicher und räumlicher Auflösung

Das in COSYNA eingesetzte Radarsystem besteht aus drei Antennenstationen auf den Inseln Wangerooge und Sylt sowie auf dem Festland in Büsum. „Das Radar sendet mit einer Frequenz von ca. 12 MHz und macht sich den Dopplereffekt zunutze, um aus den zurückgestreuten Signalen Informationen über die Strömungsrichtungen und –geschwindigkeiten zu gewinnen. Die Geräte liefern Informationen über die Oberflächenströmung mit hoher räumlicher und zeitlicher Auflösung“ erklärt Dr. Jörg Seemann aus der Abteilung Radarhydrographie des Helmholtz-Zentrums Geesthacht.

Die einzelnen Antennenstationen haben eine Reichweite von ca. 100 km und decken so weite Teile der Deutschen Bucht ab.

Die im Journal of Atmospheric and Oceanic Technology vorgestellte neue Methode kombiniert die Analysen der numerischen Modelle mit den Daten aus den Beobachtungen der Hochfrequenzradargeräte und ermöglicht so eine verbesserte Vorhersage insbesondere von kurzfristigen Entwicklungen im Strömungsgeschehen in der Deutschen Bucht innerhalb der nächsten 12 Stunden.

„Die Strömungen in der Deutschen Bucht sind sowohl durch die Gezeiten als auch durch den Wind angetrieben. Die Vorhersage ist durch die komplizierte Küstenform und die Struktur des Meeresbodens anspruchsvoll“, sagt Johannes Schulz-Stellenfleth aus der Abteilung „Auswertung und Datenassimilation“ von Prof. Emil Stanev.

Leben retten durch genauere Strömungsabschätzung

In der Praxis sind solche Informationen im Fall von Ölunfällen oder zur Rettung Schiffsbrüchiger unerlässlich. Je genauer sich das Strömungsgeschehen abschätzen lässt, desto gezielter können Rettungsteams auf einen Unfall reagieren und negative Auswirkungen mindern.

"Bei der Positionsbestimmung von driftenden Objekten auf der Meeresoberfläche können schon relativ kleine Fehler in den Strömungsschätzungen zu erheblichen Ortsabweichungen führen. Für viele praktische Anwendungen müssen diese Fehler minimiert werden“, sagt Emil Stanev.

So zum Beispiel bei im Wasser treibenden Personen, die nach Unfällen auf Schiffen oder Offshore-Plattformen im Rahmen von "Search and Rescue" (SAR) Operationen geborgen werden müssen. Die im Artikel vorgestellte Methode ist inzwischen in das zu COSYNA gehörende Vorhersagesystem integriert und die entsprechenden Strömungsfelder sind auf der COSYNA Webseite frei verfügbar.

Der Artikel ist erschienen in der Februar-Ausgabe des Journal of Atmospheric and Oceanic Technology, Vol. 32, No. 2, Seiten 256-281.

Hintergrund

Das Beobachtungs- und Analysesystem COSYNA (Coastal Observing System for Northern and Arctic Seas) wird am Institut für Küstenforschung des Helmholtz-Zentrums Geesthacht gemeinsam mit zahlreichen Partner-Institutionen entwickelt und koordiniert. Der gemeinsame Betrieb und die Forschung mit Hilfe der Messgeräte und Plattformen schaffen die wissenschaftliche Basis, um Veränderungen an den Küsten einzuschätzen und die Grundlagen für ein nachhaltiges Küstenmanagement zu legen.

Ziel von COSYNA ist die Entwicklung eines integrierten Beobachtungs- und Modellierungssystems, das geeignet ist, den Umweltzustand der Küstengewässer von Nordsee und Arktis ständig zu beobachten und zu beschreiben. COSYNA stellt Daten und Datenprodukte zur Verfügung, die Behörden, der Wirtschaft und der Öffentlichkeit dabei helfen sollen, Routineaufgaben zu planen und zu bearbeiten, auf Notfälle zu reagieren und Trends zu bewerten. Wissenschaftliche Produkte und Infrastruktur werden in COSYNA entwickelt, um unser Wissen über die “globale Küste” und ihre regionalen Ausprägungen zu erweitern.

Weitere Informationen:

http://www.hzg.de/institutes_platforms/coastal_research/news/058833/index.php.de

Dr. Torsten Fischer | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie