Berliner Naturkundemuseum berät Europäische Weltraumorganisation

Neben der Abschätzung des zu erwartenden Schadens in Abhängigkeit von der Größe des Meteoriden und der Art der betroffenen Region sollen auch Szenarien simuliert werden, wie ein solches Ereignis verhindert bzw. wie Folgen minimiert werden können.

Es ist nicht eine Frage ob, sondern wann die Erde das nächste Mal von einem kosmischen Körper getroffen wird. Kleinere, wenige Meter große Körper treffen die Erde relativ häufig, zerbrechen aber meist in der Atmosphäre und verglühen entweder als Sternschnuppen vollständig oder fallen als etwa faustgroße Meteorite auf die Erde. Ein mehrere Zehnermeter großer Steinmeteorit zerplatze 1908 in der Atmosphäre.

Bei dem sogenannten Tunguska Ereignis vernichtete die Druckwelle in der Atmosphäre etwa 2000 km2 Wald. Ein ähnliches Ereignis über besiedeltem Gebiet würde erheblichen menschlichen und wirtschaftlichen Schaden verursachen. Deutlich größere Körper, mehrere Kilometer im Durchmesser, kollidieren mit der Erde zwar wesentlich seltener, hätten aber globale Konsequenzen und stellen eine Bedrohung für die gesamte Menschheit dar. So hat vor 65 Millionen Jahren der Einschlag eines Asteroiden die Dinosaurier ausgelöscht und ein globales Massenaussterben ausgelöst.

Ziel der Forschung am Museum für Naturkunde ist es zu klären, welchen Einfluss Kollisionsereignisse auf die Entwicklung der Planeten und die Evolution des Lebens gehabt haben und welche Prozesse in den Gesteinen unter extremen Druck und Temperaturbedingungen während eines Einschlages ablaufen. Dazu gehört neben der Erfassung von Kraterstrukturen und die mineralogische Analyse ihrer Gesteine auch Computersimulationen von Einschlagexperimenten, Tsunamiwellen, Hangrutschungen sowie Laborexperimente.

Mit Hilfe von Computersimulationen und Daten von Nukleartests soll nun versucht werden, die direkten Auswirkungen eines Einschlages auf die Umwelt genauer zu quantifizieren. Die Hitze, die beim Aufschlag eines Körpers mit einer Geschwindigkeit von ~70.000 km/h entsteht, ist so groß, dass noch in einer Entfernung von mehreren 100 km alles Brennbare sofort Feuer fängt. Die Druckwelle bringt selbst Stahlkonstruktionen zum Einsturz.

Heiße Gesteinpartikel werden viele 100 km weit ausgeworfen und Treibhausgase werden beim Verdampfen von Gestein freigesetzt, die nachhaltig das Klima beeinflussen könnten. Fällt ein Körper in den Ozean werden Tsunamiwellen erzeugt, die die Küsten noch in tausenden Kilometer Entfernung verwüsten können. Die Simulation dieser dadurch ausgelösten Tsunamiwellen ist ein Forschungsschwerpunkt am Museum für Naturkunde Berlin.

In dieser Studie sollen der bisherige Kenntnisstand zusammengefasst und die Qualität der Prognosen durch Computermodelle bewertet werden. Projektpartner der Firma DEIMOS in Spanien sowie von den Universitäten in Southampton und Oslo befassen sich parallel mit der Frage, welche gesellschaftlichen und wirtschaftlichen Auswirkungen ein solches Ereignisse hätte beziehungsweise wie eine Kollision verhindert oder die Folgen zumindest minimiert werden könnten.

Kontakt:
Dr. Gesine Steiner, Öffentlichkeitsarbeit, Tel. +49(0)30 2093 8917 Fax. +49(0)30 2093 8914, e-mail gesine.steiner@mfn-berlin.de

Media Contact

Dr. Gesine Steiner idw

Weitere Informationen:

http://www.naturkundemuseum-berlin.de

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer