Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiße Eruptionen in Süditalien

08.06.2007
Wenn ein Vulkan explodiert und seine Eruptionswolke in den Himmel jagt, kann diese in der Luft kollabieren, nach unten fallen und als alles vernichtende Lawine aus glühendem Gestein, Gasen und Asche die Hänge des Berges hinunterrasen. Vulkan-Experten von der Uni Würzburg simulieren diese so genannten pyroklastischen Ströme in Experimenten, die sie zusammen mit italienischen Forschern durchführen.

Die Ströme sind mehrere hundert Grad Celsius heiß und können an die 250 Stundenkilometer schnell werden. Sie fegten zum Beispiel im Jahr 79 den Vesuv hinab und zerstörten Pompeji und andere Siedlungen. Seit 1944 verhält sich dieser Vulkan zwar ruhig. Doch sollte er wieder ausbrechen, droht höchste Gefahr - denn in seiner nächsten Umgebung, im Ballungsraum von Neapel, leben heute rund 1,2 Millionen Menschen.

In Italien überlegen die Katastrophenschützer darum, zumindest die Häuser im weiteren Umkreis des Vesuv so auszustatten, dass sie einem pyroklastischen Strom widerstehen können. Vorrangig Schulen und Kliniken sollten das sein, Häuser also, in denen möglichst viele Menschen Zuflucht finden können.

Allerdings weiß bislang niemand, welche Gewalt die Vulkan-Lawinen entfalten, welchen Druck die Bauten aushalten müssen. Hier kommen die Würzburger ins Spiel: Professor Bernd Zimanowski und sein Team sind dafür bekannt, dass sie in ihrem Physikalisch-Vulkanologischen Labor Eruptionen und andere vulkanische Vorgänge simulieren und analysieren. Darum wurden sie von der italienischen Zivilschutzbehörde, dem dortigen Nationalen Geophysik- und Vulkanologie-Institut sowie von Forschern der Universität Bari für ein gemeinsames Projekt angeworben.

... mehr zu:
»Asche »Eruption »Eruptionswolke »Vesuv »Vulkan

Seit 2005 experimentieren die Wissenschaftler im Süden Italiens, bei der Gemeinde Spinazzola in Apulien, mit einer Art künstlichem Vulkan: Sie füllen eine Kanone mit bis zu 300 Kilogramm Vulkanasche vom Vesuv und feuern die Ladung mit genau festgelegter Abschussenergie bis zu 40 Meter hoch in die Luft. So entsteht eine Eruptionswolke im Kleinformat.

Mit dieser Anordnung lassen sich die wichtigsten Aspekte eines echten Vulkanausbruchs simulieren, wie die Wissenschaftler im April im Journal of Geophysical Research berichteten. Die Ablagerungen der künstlichen Eruptionswolke entsprechen denjenigen bei natürlichen Bedingungen. Auch die Größenordnung des Experiments reicht aus, um auf die Verhältnisse an echten Vulkanen hochrechnen zu können.

Die ersten Versuche erledigten die Forscher der Einfachheit halber mit kalter Vulkanasche. Bei einer echten Eruption aber ist das Material natürlich heiß. Um das zu simulieren, ist wesentlich mehr Aufwand nötig: "Die thermische Leitfähigkeit der Asche ist sehr schlecht. Wollte man 300 Kilo davon auf 300 Grad erhitzen, würde man dafür mehrere Tage brauchen", erklärt Zimanowski. Darum reduzierten die Wissenschaftler ihr Experiment und verwendeten eine kleinere Kanone, die sie mit nur 30 Kilogramm heißer Asche befüllten. Eine solche Menge konnten sie in einem Elektroofen über Nacht aufheizen.

Nach den ersten "heißen Eruptionen" steht fest, dass sich die Vulkan-Spezialisten das Aufheizen künftig wohl sparen können: "Was den Zeitpunkt des Kollapses der Eruptionswolke angeht, spielt die Temperatur keine Rolle, da waren die Verhältnisse wie bei den ersten Versuchen mit kalter Asche", sagt Zimanowski. Jetzt müsse man noch auswerten, ob auch die Fließgeschwindigkeit des künstlichen pyroklastischen Stroms identisch ist.

"Falls ja, können wir unsere weiteren Experimente weniger aufwändig mit der kalten Asche machen", so der Würzburger Forscher. Auf dem weiteren Arbeitsplan steht - voraussichtlich Anfang 2008 - die genaue physikalische Vermessung der künstlichen pyroklastischen Ströme. Mit Sensorfeldern, die im Umfeld der künstlichen Vulkane angelegt werden, sollen dann unter anderem Druck und Temperatur registriert werden. "Daraus könnten sich erste direkt verwertbare Hinweise für die Zivilschutzbehörden ergeben", so der Würzburger Professor. Im besten Fall kommt bei dem Projekt heraus, dass sich Gebäude bautechnisch gegen pyroklastische Ströme sichern lassen. Im Umfeld des Vesuv wäre dafür genug Bedarf.

"Large-scale experiments on the mechanics of pyroclastic flows: Design, engineering, and first results": Pierfrancesco Dellino, Bernd Zimanowski, Ralf Büttner, Luigi La Volpe, Daniela Mele, and Roberto Sulpizio, 10. April 2007, Journal of Geophysical Research, Vol. 112, Nr. B4, B04202, doi:10.1029/2006JB004313

Weitere Informationen: Prof. Dr. Bernd Zimanowski, T (0931) 31-2379, zimano@geologie.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.geologie.uni-wuerzburg.de/physvulk/index-deutsch.html

Weitere Berichte zu: Asche Eruption Eruptionswolke Vesuv Vulkan

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Neue Erkenntnisse zum Meeresspiegel-Anstieg
26.05.2017 | Universität Siegen

nachricht Polarstern ab heute unterwegs nach Spitzbergen, um Rolle der Wolken bei Erwärmung der Arktis zu untersuchen
24.05.2017 | Leibniz-Institut für Troposphärenforschung e.V. (TROPOS)

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften