Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiße Eruptionen in Süditalien

08.06.2007
Wenn ein Vulkan explodiert und seine Eruptionswolke in den Himmel jagt, kann diese in der Luft kollabieren, nach unten fallen und als alles vernichtende Lawine aus glühendem Gestein, Gasen und Asche die Hänge des Berges hinunterrasen. Vulkan-Experten von der Uni Würzburg simulieren diese so genannten pyroklastischen Ströme in Experimenten, die sie zusammen mit italienischen Forschern durchführen.

Die Ströme sind mehrere hundert Grad Celsius heiß und können an die 250 Stundenkilometer schnell werden. Sie fegten zum Beispiel im Jahr 79 den Vesuv hinab und zerstörten Pompeji und andere Siedlungen. Seit 1944 verhält sich dieser Vulkan zwar ruhig. Doch sollte er wieder ausbrechen, droht höchste Gefahr - denn in seiner nächsten Umgebung, im Ballungsraum von Neapel, leben heute rund 1,2 Millionen Menschen.

In Italien überlegen die Katastrophenschützer darum, zumindest die Häuser im weiteren Umkreis des Vesuv so auszustatten, dass sie einem pyroklastischen Strom widerstehen können. Vorrangig Schulen und Kliniken sollten das sein, Häuser also, in denen möglichst viele Menschen Zuflucht finden können.

Allerdings weiß bislang niemand, welche Gewalt die Vulkan-Lawinen entfalten, welchen Druck die Bauten aushalten müssen. Hier kommen die Würzburger ins Spiel: Professor Bernd Zimanowski und sein Team sind dafür bekannt, dass sie in ihrem Physikalisch-Vulkanologischen Labor Eruptionen und andere vulkanische Vorgänge simulieren und analysieren. Darum wurden sie von der italienischen Zivilschutzbehörde, dem dortigen Nationalen Geophysik- und Vulkanologie-Institut sowie von Forschern der Universität Bari für ein gemeinsames Projekt angeworben.

... mehr zu:
»Asche »Eruption »Eruptionswolke »Vesuv »Vulkan

Seit 2005 experimentieren die Wissenschaftler im Süden Italiens, bei der Gemeinde Spinazzola in Apulien, mit einer Art künstlichem Vulkan: Sie füllen eine Kanone mit bis zu 300 Kilogramm Vulkanasche vom Vesuv und feuern die Ladung mit genau festgelegter Abschussenergie bis zu 40 Meter hoch in die Luft. So entsteht eine Eruptionswolke im Kleinformat.

Mit dieser Anordnung lassen sich die wichtigsten Aspekte eines echten Vulkanausbruchs simulieren, wie die Wissenschaftler im April im Journal of Geophysical Research berichteten. Die Ablagerungen der künstlichen Eruptionswolke entsprechen denjenigen bei natürlichen Bedingungen. Auch die Größenordnung des Experiments reicht aus, um auf die Verhältnisse an echten Vulkanen hochrechnen zu können.

Die ersten Versuche erledigten die Forscher der Einfachheit halber mit kalter Vulkanasche. Bei einer echten Eruption aber ist das Material natürlich heiß. Um das zu simulieren, ist wesentlich mehr Aufwand nötig: "Die thermische Leitfähigkeit der Asche ist sehr schlecht. Wollte man 300 Kilo davon auf 300 Grad erhitzen, würde man dafür mehrere Tage brauchen", erklärt Zimanowski. Darum reduzierten die Wissenschaftler ihr Experiment und verwendeten eine kleinere Kanone, die sie mit nur 30 Kilogramm heißer Asche befüllten. Eine solche Menge konnten sie in einem Elektroofen über Nacht aufheizen.

Nach den ersten "heißen Eruptionen" steht fest, dass sich die Vulkan-Spezialisten das Aufheizen künftig wohl sparen können: "Was den Zeitpunkt des Kollapses der Eruptionswolke angeht, spielt die Temperatur keine Rolle, da waren die Verhältnisse wie bei den ersten Versuchen mit kalter Asche", sagt Zimanowski. Jetzt müsse man noch auswerten, ob auch die Fließgeschwindigkeit des künstlichen pyroklastischen Stroms identisch ist.

"Falls ja, können wir unsere weiteren Experimente weniger aufwändig mit der kalten Asche machen", so der Würzburger Forscher. Auf dem weiteren Arbeitsplan steht - voraussichtlich Anfang 2008 - die genaue physikalische Vermessung der künstlichen pyroklastischen Ströme. Mit Sensorfeldern, die im Umfeld der künstlichen Vulkane angelegt werden, sollen dann unter anderem Druck und Temperatur registriert werden. "Daraus könnten sich erste direkt verwertbare Hinweise für die Zivilschutzbehörden ergeben", so der Würzburger Professor. Im besten Fall kommt bei dem Projekt heraus, dass sich Gebäude bautechnisch gegen pyroklastische Ströme sichern lassen. Im Umfeld des Vesuv wäre dafür genug Bedarf.

"Large-scale experiments on the mechanics of pyroclastic flows: Design, engineering, and first results": Pierfrancesco Dellino, Bernd Zimanowski, Ralf Büttner, Luigi La Volpe, Daniela Mele, and Roberto Sulpizio, 10. April 2007, Journal of Geophysical Research, Vol. 112, Nr. B4, B04202, doi:10.1029/2006JB004313

Weitere Informationen: Prof. Dr. Bernd Zimanowski, T (0931) 31-2379, zimano@geologie.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.geologie.uni-wuerzburg.de/physvulk/index-deutsch.html

Weitere Berichte zu: Asche Eruption Eruptionswolke Vesuv Vulkan

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie