Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Asteroideneinschlag und das Artensterben vor 65 Millionen Jahren

03.12.2001


1D- und 3D-Darstellung der magnetischen Anomalien des inneren Chicxulub-Kraterringes berechnet aus den Aeromagnetikmessungen der GFZ-Befliegung "MEXAGE" (Mexico Aerogeophysical Experiment).
Die Anomalien begrenzen sich scharf auf den inneren Krater. Die langwelligen Anomalien entstehen durch die großen Schmelzkörper im Kraterinneren, die kurzwelligen durch darüberliegendes Auswurfmaterial.
(Abb.: U. Meyer, GFZ Potsdam)


Bohrprojekt zur Erkundung des Asteroideneinschlags, der vor 65 Mio. Jahren zum großen Artensterben führte

Am 3. Dezember beginnt mit der Bohrung in den Chicxulub-Einschlagkrater auf der Halbinsel Yucatan, Mexico, ein wissenschaftliches Tiefbohrprojekt zur Erforschung des Asterioideneinschlags, der vor etwa 65 Millionen Jahren zum Aussterben der Dinosaurier geführt haben kann. An der feierlichen Eröffnung nehmen der Gouverneur der Provinz Yucatan, Patricio P. Laviada, der Präsident der Autonomen Universität von Mexiko, Juan R. de la Fuente, zahlreiche Wissenschaftler und Ingenieure sowie Politiker aus der Region teil. Repräsentanten Deutschlands sind der deutsche Botschafter in Mexico, Dr. Wolf-Ruthart Born und Professor Dr. Rolf Emmermann, Vorstandsvorsitzender des GeoForschungsZentrums Potsdam. Professor Emmermann ist zugleich Vorsitzender des Internationalen Kontinentalen Bohrprogramms ICDP, in dessen Rahmen das Bohrprojekt stattfindet.
Die Bohrung mit dem Namen Yaxcopoil-1 (YAX-1) liegt 40 Kilometer südwestlich der Provinzhauptstadt Merida. Sie soll einerseits grundlegende Erkenntnisse über Größe und stoffliche Beschaffenheit des Projektils, die Menge der bei dem Einschlag freigesetzten Energie, Struktur und Aufbau des Einschlagkraters und der physikalisch-chemischen Prozesse beim Einschlag liefern. Andererseits sollen die Auswirkungen dieses katastrophalen Ereignisses auf Umwelt und Leben erforscht werden.

Chicxulub und die Kreide/Tertiär-Grenze


Vor etwa 65 Millionen Jahren, an der Grenze der Kreidezeit (der letzten geologischen Epoche des Mesozoikum) zum Tertiär schlug ein Asteroid mit einer Geschwindigkeit von mehr als 25 Kilometern pro Sekunde an der Spitze der Yucatan-Halbinsel ein. Die enorme Einschlagsenergie dieses Projektils mit mehr als 10 km Durchmesser entsprach mehr als dem Zehntausendfachen des gesamten Arsenals an Nuklearwaffen der Welt und setzte riesige Mengen an Staub und Gas frei.
Der Asteroid schlug in ein damaliges flaches Meer ein und drang einige Kilometer tief in die Erdkruste ein, wobei Wasser und das Karbonat- und Sulfat-Gestein von Yucatan an der Einschlagstelle verdampften, aufschmolzen oder zerfielen. In sehr kurzer Zeit von wenigen Minuten wurden einige Hundert Milliarden Tonnen von CO2, SO2 und Wasserdampf in die Atmosphäre geschleudert. Eine Flutwelle raste um die Erde, deren Spuren heute noch zu finden sind. Dem Einschlag folgte eine abrupte globale Störung des Systems Erde: das Klima wurde instabil, der feine atmosphärische Staub schirmte das Sonnenlicht ab und blockierte die Photosynthese. Es wird angenommen, dass diese ökologische Katastrophe das berühmte massenhafte Artensterben an der Grenze der Kreidezeit zum Tertiär (KT) verursachte, wovon die Dinosaurier und über die Hälfte der Flora und Fauna an Land und im Meer betroffen wurden.
Die Hypothese, dass ein Asteroid oder Komet das Artensterben in Gang setzte, wurde zuerst 1980 durch eine Gruppe an der Universität von Kalifornien unter Führung des Nobelpreisträgers und Physikers Luis Alvarez und seinem Sohn, dem Geologen Walter Alvarez, formuliert. Anfangs heftig umstritten, wurde diese Hypothese bestätigt, als Wissenschaftler Anfang 1990 feststellten, dass die mit rund einem Kilometer Sediment bedeckte Einschlagsstruktur in Yucatan der lang gesuchte Krater an der KT-Grenze war, den die Alvarez-Hypothese unterstellte. Diese schüsselförmige Struktur mit Zentrum bei Puerto Chicxulub/Merida prägt sich deutlich in magnetischen und Schwere-Anomalien durch. Sie wurde zuerst durch die Geophysiker Antonio Camargo-Zanoguera und Glen Penfield bei Öl-Explorationsarbeiten für Pemex festgestellt. In dieser Struktur wurde zunächst erfolglos nach Öl gebohrt. In den späten Neunzigern bestätigten Bohrkerne, dass die Chicxulub-Struktur ein riesiger Krater ist.

Die Altersbestimmung der Gesteine zeigte, dass sie genau aus der Zeitstufe der KT-Grenze stammten, altersgleich mit dem massenhafte Artensterben. Bis heute ist noch nicht gut verstanden, wie der Einschlag das System Erde störte und das Auslöschen der Arten in Gang setzte. Die Untersuchung des Kraters und seiner internen Struktur im Rahmen dieses ICDP-Bohrprojektes wird auf diese wichtigen Fragen Antwort geben.

Kraterbildung als wichtiger Prozess in der Planetenbildung


Das ICDP-Tiefbohrprojekt im Chicxulubkrater wird den Geowissenschaften ein verbessertes Verständnis der Kraterbildung geben. Die Kraterbildung ist ein wesentlicher Prozess bei der Bildung und Entwicklung von Planeten. Mit seinem Durchmesser von etwa 200 Kilometern ist der Chicxulub-Krater einer der größten und am besten erhaltenen Krater der Erde. Der Chicxulub kann daher als Prototyp einer zugänglichen planetarischen Impaktstruktur dienen, die uns Schlüsselinformationen über die Bildung und frühe Evolution der Erde und der trockenen (Mond Merkur) oder gasreichen Planeten (z.B. Venus) gibt.

Dipl.Met. Franz Ossing | idw
Weitere Informationen:
http://icdp.gfz-potsdam.de/

Weitere Berichte zu: Artensterben Asteroid Asteroideneinschlag Einschlag Krater

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops