Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Suche nach den ältesten Gesteinen im Sonnensystem

07.02.2006


Die Deutsche Forschungsgemeinschaft (DFG) hat den Universitäten Köln und Bonn 1,2 Millionen Euro für den Kauf eines hochpräzisen Massenspektrometers bewilligt. Mit dem Gerät werden die Mineralogen unter anderem nach der ältesten Materie im Sonnensystem fahnden. In einem neuen Bonn-Kölner Labor für Isotopengeochemie wollen sie auch Mondgestein unter die Lupe nehmen.


Das Bild zeigt den Allende-Meteoriten, der 1968 auf die Erde gefallen ist. Er ist 4.56 Milliarden Jahre. Die braunen Fragmente (chondren) sind Schmelztröpfchen, die bei einem Kosmischen Gewitter vor 4.56 Milliarden Jahren enstanden sind. Das weiße Fragment ist eines der ältesten Kondensate im Sonnensystem (4,567 Milliarden Jahre). Seit dem letzten Jahr erst ist bekannt, dass Eisen-Meteorite noch älter sind. Foto: Prof. Dr. Carsten Münker



Vor 14,7 Millionen Jahren hagelte es im heutigen Tschechien grünes Glas. Kurz zuvor war in Süddeutschland ein riesiger Meteorit eingeschlagen. Dabei hatte er einen Krater von 23 Kilometern Durchmesser gerissen: Das Nördlinger Ries. Das Projektil verdampfte, mit ihm einige Kubikkilometer Erdgestein. Innerhalb weniger Minuten bildete sich eine Wolke von über 100 Kilometern Höhe. Daraus kondensierten die Glaskörper, die wenig später südlich des heutigen Prag herunterregneten. Ein bis zehn Zentimeter groß sind diese Moldavite. Sie ähneln zerbrochenen Bierflaschen und haben mit dem Gestein, das man heute hunderte Kilometer weiter westlich im Nördlinger Ries findet, augenscheinlich nicht viel gemein. "Mit Isotopenmessungen konnte man aber nachweisen, dass die Moldavite tatsächlich aus dem Meteoritenaufprall stammen", erklärt der Bonner Mineraloge Professor Dr. Carsten Münker.



Altersrekord liegt bei 4,570 Milliarden Jahren

Münkers Arbeitsgruppe hat zusammen mit seinem Kölner Kollegen Professor Dr. Herbert Palme gerade ein neues Messgerät bewilligt bekommen, das diesen Nachweis noch präziser führen könnte: Ein extrem empfindliches Massenspektrometer, mit dem sich die Häufigkeit verschiedener Isotope in Gesteinen und Mineralen messen lässt. "Isotope sind Teilchen ein und desselben chemischen Elements, die jedoch unterschiedliche Massen besitzen, also unterschiedlich ’schwer’ sind", erklärt Münker. "Mit dem neuen Gerät können wir den Anteil eines Isotops in einem Festkörper bis auf 0,001 Prozent genau bestimmen." Mit dem 1,2 Millionen Euro teuren Gerät wollen sich die Mineralogen nun nach den ältesten Gesteinen und Mineralen im Sonnensystem fahnden. Bisheriger Rekordhalter sind nach neuen Ergebnissen der Köln-Bonner Mineralogen die so genannten Eisen-Meteorite: Sie sind bis zu 4,570 Milliarden Jahre alt und damit etwa 3 Millionen Jahre vor dem bislang ältesten datierten Material im Sonnensystem entstanden.

Isotope dienen den Mineralogen als Uhr: Viele von ihnen sind nicht stabil, sondern zerfallen im Laufe der Zeit. Von einem Gramm Uran bleibt so nach 4,5 Milliarden Jahren nur noch etwas mehr als die Hälfte übrig, die andere Hälfte hat sich in dieser Zeit in Blei verwandelt. Aus dem Verhältnis von Uran zu Blei in sehr alten Erdgesteinen kann man daher das Mindestalter unseres Heimatplaneten abschätzen - allerdings nur ziemlich grob, da die Erde durch Plattenbewegungen stets ihre Oberfläche verjüngt. "Es gibt aber auch Elemente, die eine so geringe Halbwertszeit hatten, dass sie schon wenige hundert Millionen Jahre nach Entstehung der Erde komplett zerfallen waren", erläutert Münker. "Sie erlauben eine viel genauere Altersmessung - vorausgesetzt, man hat ein entsprechend empfindliches Massenspektrometer."

Ausgestorben ist beispielsweise das Isotop Hafnium-182. Es wandelt sich mit einer Halbwertszeit von 9 Millionen Jahren in Wolfram-182 um - Wolfram ist das Metall, aus dem unter anderem der Draht von Glühbirnen besteht. Als sich die Erde kurz nach ihrer Entstehung abkühlte, sank das meiste Wolfram in den metallischen Erdkern ab. Da in der inzwischen erstarrten äußeren Hülle der Erde damals noch ein wenig Hafnium-182 vorhanden war, bildete sich dort aber noch Wolfram-182 nach. Aus der Wolfram-182-Menge im Erdgestein lässt sich daher errechnen, wann sich der metallische Kern der Erde bildete - ein viel verlässlicheres Maß für das Alter unseres Planeten (ungefähr 4,53 Milliarden Jahre). "Dazu benötigen wir aber als Referenz Material aus dem All, also beispielsweise von niedergegangenen Meteoriten", erklärt Münker. "Nur so können wir feststellen, wie hoch die Wolfram-182-Menge auf der Erde heute wäre, wenn ein Großteil davon nicht unwiederbringlich im Erdkern verschwunden wäre."

20.000 Meteorite pro Jahr

Eine Spezialität der Bonn-Kölner Mineralogie ist daher die Untersuchung von außerirdischen Proben. Mangel herrscht daran glücklicherweise nicht: Rund 20.000 Meteorite mit einer Masse von mehr als 100 Gramm fallen pro Jahr auf die Erdoberfläche. Besonders leicht fündig wird man an den Polen oder in großen Sandwüsten wie der Sahara: Einerseits verwittert das Material dort nicht so schnell, andererseits hebt es sich aufgrund seiner dunklen Farbe gut vom Untergrund ab. "Wir untersuchen aber beispielsweise auch Mondgestein, das durch die Apollo-Missionen zur Erde gebracht wurde", erklärt Münker. Etwa 360 Kilogramm hatten die Raumfahrer damals eingesammelt. Das Material ist extrem wertvoll; daher darf man für Untersuchungen nur kleinste Mengen verbrauchen. Kein Problem für das neue Gerät, betont Professor Münker: "Das Spektrometer ist so empfindlich, dass wir damit schon an geringsten Probenmengen Isotopenmessungen durchführen können."

Kontakt:
Professor Dr. Carsten Münker
Mineralogisch-Petrologisches Institut der Universität Bonn
Telefon: 0228/73-2733
E-Mail: muenker@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Gestein Meteorit Mineraloge Sonnensystem

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie