Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien haben im Präkambrium riesige Mengen Eisen abgelagert

27.10.2005


Geomikrobiologe belegt neue Hypothese zur Bildung der gebänderten Eisenerze



In Westaustralien und Südafrika gibt es bis zu mehreren hundert Meter dicke Gesteinsschichten, die gebänderte Eisenerze (Banded Iron Formations, BIFs) heißen und tatsächlich auch mit bloßem Auge eine klare Schichtung erkennen lassen. Dabei wechseln sich Lagen von Eisenmineralen und Siliziumoxyd ab. Bisher konnte nicht eindeutig geklärt werden, wie diese merkwürdigen Formationen entstanden sind. Die Geologen gehen davon aus, dass das Eisen durch die Aktivität von Lebewesen dort abgelagert wurde. Bisher standen hauptsächlich Sauerstoff produzierende Cyanobakterien, auch bekannt unter dem Namen Blaualgen, im Verdacht, das Eisen durch chemische Oxidation des Eisens mit dem gebildeten Sauerstoff abgelagert zu haben. Unter Wissenschaftlern wird aber diskutiert, wann in der Erdatmosphäre überhaupt ausreichend Sauerstoff durch Cyanobakterien gebildet worden war, um solche Eisenformationen zu bilden. Denn die gebänderten Eisenerze stammen bereits aus dem Präkambrium, sie sind bis 3,8 Milliarden Jahre alt - das Alter der Erde wird auf 4,5 bis 4,6 Milliarden Jahre geschätzt. Nun hat der Geomikrobiologe Dr. Andreas Kappler vom Zentrum für angewandte Geowissenschaften der Universität Tübingen, vormals California Institute of Technology, zusammen mit anderen kalifornischen Forschern, Claudia Pasquero und Dianne K. Newman, sowie dem kanadischen Forscher Kurt O. Konhauser von der University of Alberta in Edmonton eine andere Entstehungshypothese der gebänderten Eisenformationen mit Experimenten untermauert: Danach sind die Eisenschichten durch die lichtabhängige Aktivität von Eisenbakterien entstanden, die ohne Sauerstoff auskommen. Die Forschungsergebnisse sind in der Novemberausgabe der Fachzeitschrift Geology veröffentlicht (Geology, November 2005, Ausgabe 33, Nummer 11, Seiten 865-868).



Wenn Sauerstoff in der Atmosphäre fehlt, kann zweiwertiges Eisen in einer chemischen Reaktion durch ultraviolettes Licht oxidiert und als dreiwertiges Eisen abgelagert werden. Eine solche Entstehung ist jedoch bei den gebänderten Eisenerzen höchst unwahrscheinlich, weil diese Bereiche zur Zeit des Präkambriums im Meerwasser lagen. Aber auch bestimmte Mikroorganismen, die so genannten anoxygenen phototrophen Eisenbakterien, können zweiwertiges Eisen lichtabhängig mit Hilfe ihrer Zellwerkzeuge zu dreiwertigem Eisen umsetzen. Diese Bakterien sind die entwicklungsgeschichtlich ältesten Organismen, die das Sonnenlicht für Synthesen nutzen können. Sauerstoff benötigen sie nicht. Doch von den winzigen Bakterien gibt es keine Fossilien. So haben die Wissenschaftler um Andreas Kappler in Experimenten die Bedingungen der früheren Erdatmosphäre und eines präkambrischen Ozeans simuliert und den Stoffwechsel heutiger anoxygener phototropher Bakterien der Stämme Thiodictyon und Rhodobacter ferrooxidans untersucht. Sie stellten fest, dass diese Organismen unter den Lichtbedingungen in der Tiefe des Ozeans, bei bewegtem Oberflächenwasser und sauerstofffreiem Umgebungswasser Eisen in großen Mengen ablagern können. Das ist nach ihren Untersuchungen selbst dann der Fall, wenn sich in den höheren Wasserschichten zusätzlich sauerstoffbildende Cyanobakterien angesiedelt hätten. Die Wissenschaftler halten die anoxygenen phototrophen Eisenbakterien daher für die wahrscheinlichsten Verursacher der Eisenablagerungen in den gebänderten Eisenformationen.

Nähere Informationen:

Dr. Andreas Kappler
Zentrum für Angewandte Geowissenschaften
Wilhelmstr. 56
72074 Tübingen
Tel. 0 70 71/2 97 49 92
Fax: 0 70 71/29 51 39
E-Mail: andreas.kappler@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Bakterie Cyanobakterie Eisen Eisenbakterie Eisenformation Präkambrium Sauerstoff

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics