Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Verdrehte" Moleküle erzählen die Geschichte des Wattbodens

15.09.2005


Mit Anpassung einer neuen Methode an die Verhältnisse in der südlichen Nordsee gelingt es Wissenschaftlern des Wilhelmshavener Forschungszentrums TERRAMARE, Alter und Zuwachsgeschwindigkeit von Wattböden zu ermitteln. Wichtig ist dies unter anderem im Hinblick auf Meeresspiegelanstieg und Küstenschutz.



Prof. Gerd Liebezeit und Dipl.-Chem. Daniel Ziehe haben am Wilhelmshavener Forschungszentrum TERRAMARE eine neue Art von Zeitmesser erstmalig in Deutschland eingesetzt, um Alter und Anhäufungsraten von Wattablagerungen zu bestimmen. Bedeutsam ist dies zum Beispiel für Prognosen bezüglich der Auswirkungen des Meeresspiegelanstiegs und Empfehlungen für den Küstenschutz. Eine wichtige Rolle spielen bei der Zeitbestimmung Tiere im Sediment, die kalkige Überreste produzieren. Erste Versuchsergebnisse sind in sehr guter Übereinstimmung mit Pegelauswertungen.



Wer häufiger Wattwanderungen unternimmt, dem fällt es auf: Priele verändern sich, schlickige Bereiche verfestigen sich, sandige Zonen verschlicken und vieles mehr. Kurz: Das Wattenmeer ist in stetigem Wandel begriffen. Wie schnell aber häufen sich die sogenannten Sedimente an, wie lange ist es her, daß sie abgelagert wurden? Dies sind Fragen, die die Wissenschaft - mit durchaus praktischem Bezug - beschäftigen.

Wollte man bislang etwas über das Alter der Wattbodenschichten erfahren, so benutzte man dazu fast ausschließlich die 14C-Methode. Grundlage hierfür: Unter dem Einfluß kosmischer Strahlung entsteht in der Atmosphäre aus Stickstoff fortwährend ein spezielles Kohlenstoffatom: 14C (sprich "Ceh vierzehn"). Über Kohlendioxid wird es zu Lebzeiten in den Körper etwa einer Pflanze eingebaut. Stirbt die Pflanze, hört der Einbau auf. Durch den radioaktiven Zerfall des bis dahin eingebauten Kohlenstoffs entfernt sich der 14C -Gehalt im toten Pflanzenmaterial immer weiter vom Lebendwert - ein Maß für das Alter der Pflanze.

Schönheitsfehler der 14C-Methode: Sie funktioniert nur an Proben, die reich an ehemals lebendem, sogenanntem organischem Material sind. Im Wattboden gehören zum Beispiel Torfe dazu. Auf diese Weise erhält man zwar Zeitmarken ähnlich etwa den Markierungen auf dem Ziffernblatt einer Uhr. Sind die Markierungen jedoch - vergleichbar einem modischen Ziffernblatt - spärlich gesetzt, kann das Alter dazwischen liegender Schichten nur abgeschätzt werden. Weil die Bildung der Wattschichten häufig wechselnden Bedingungen ausgesetzt war, gerät die Abschätzung zwischen den Zeitmarken zum Ratespiel. Das ist beispielsweise dann der Fall, wenn sich stürmische Phasen mit solchen relativer Windstille oder aber solche starker Meeresspiegelanhebung mit solchen geringeren Anstiegs abwechselten - der Wissenschaftler spricht von einer dynamischen Entwicklung. Im Hinblick auf die Zeitskala ist es, als liefe eine Uhr zwischen den Zeitmarken ihres Ziffernblattes ungleichmäßig schnell.

Gerade für Gebiete hoher Dynamik bietet die neue Methode der TERRAMARE-Forscher Abhilfe. Findet man in den Ablagerungen kalkige Hinterlassenschaften biologischen Ursprungs, Muschelschalen zum Beispiel, dann lassen sich die Zeitlücken auffüllen. Damit werden 14C-Messungen und das selten angewendete Verfahren der Thermolumineszenz sinnvoll ergänzt.

Hilfreich sind den Forschern bei ihrem neuen Verfahren die Bausteine von Eiweißen, die Muscheln in ihre Schalen einbauen. Alle Organismen verwenden für ihre Eiweiße etwa 20 verschiedene Arten dieser sogenannten Aminosäuren. Und fast jede davon kommt in zwei Versionen vor, von denen aber nur eine in Pflanze oder Tier eingebaut wird. Um zu verdeutlichen, wie sich die beiden extrem ähnlichen Aminosäureformen unterscheiden, stelle man sich vor, daß sie in ihrem Innern jeweils ein besonderes Kohlenstoffatom besitzen, der Einfachheit halber repräsentiert durch je eine Kugel. Eine solche Kugel verfügt nun über vier Ärmchen, deren jedes einen anderen geometrischen Körper als Symbol für die unterschiedlichen Molekülreste festhält: Sagen wir eine Pyramide, einen Kegel, einen Würfel und einen Quader. Man stelle sich weiter vor, diese vier geometrischen Formen seien über die Ärmchen gleichmäßig um das jeweilige Kohlenstoffatom verteilt. Hält man diese Anordnung im Gedankenexperiment vor einen Spiegel, sieht man ein "verdrehtes" - besser: gespiegeltes - Abbild für die zweite Form der gleichen Aminosäure. Wie in dieser Modellvorstellung verhalten sich auch in der Realität beide Aminosäure-Formen wie Bild und Spiegelbild. Sie sind nicht zur Deckung zu bringen. Man könnte auch sagen, sie ähneln sich sich wie linke und rechte Hand, weswegen der Chemiker bei derartigen Verbindungen oft auch von Chiralität spricht (von griech.: cheiros = Hand). Das Besondere an Bild und Spiegelbild ist, daß sie chemisch weitgehend gleichartig reagieren.

Wie nun hilft dieses Phänomen den Forschern? Nun, aufgrund der verschiedenen räumlichen Anordnung wird in biologischen Systemen die eine Aminosäureform aussortiert. Enzyme etwa, jene in Lebewesen Reaktionen beschleunigenden Eiweiße, besitzen in ihrem Innern Taschen, die nur eine der Formen aufnehmen können. Das Spiegelbild ist von der Reaktion so ausgeschlossen.

Abhängig von der relativen Anordnung der unterschiedlichen Molekülschnipsel um das zentrale Kohlenstoffatom - im Gedankenmodell die geometrischen Körper - sprechen Chemiker von L-und D-Form (L leitet sich dabei vom lateinischen laevulus = links, D von dexter = rechts ab). Lebewesen bauen fast ausschließlich L-Aminosäuren ein. Diese wandeln sich mit der Zeit in einer von der Umgebungstemperatur abhängigen Reaktion solange in die D-Form um, bis ein stabiles Gleichgewicht erreicht ist. Das kann unter dem Einfluß eben der Temperatur, aber vor allem je nach Aminosäure, von einigen hundert bis zu einigen Millionen Jahren dauern.

Aus Miesmuschelschalen, die die Wilhelmshavener Forscher im Rückseitenwatt der Insel Spiegeroog fanden, haben sie sich bislang eine dieser Aminosäuren ’herausgepickt’. Mit einem speziellen Trennverfahren gelingt es, die Mengenverhältnisse von D- und L-Form in den Schalenresten aus unterschiedlichen Watttiefen zu bestimmen und daraus ihr Alter abzuleiten. Es ergab sich eine durchschnittliche Sedimentationsaufwuchsrate von 36 ± 10 Zentimetern je Jahrhundert. Das entspricht recht gut den aus Pegelauswertungen erhaltenen Werten von 25 - 30 Zentimetern/Jhdt.

Leider finden sich im Watt nur selten Miesmuschelklappen in Lebendstellung. Weitaus häufiger muß sich der Wissenschaftler mit Schalenbruchstücken, sogenanntem Schill, zufrieden geben. Nachteil: Herkunft und Transportweg zum Ort der Einbettung sind unbekannt. Besser geeignet scheint für die neuartige Altersbestimmung die Sandklaffmuschel, die häufig so, wie sie zum Zeitpunkt ihres Todes aussah, in Sedimentkernen gefunden wird. In einem weiteren Projekt, für das inzwischen finanzielle Unterstützung beantragt wurde, sollen die Untersuchungen mit der Sandklaffmuschel fortgeführt und auf weitere Aminosäuren ausgedehnt werden. Auf diese Weise wollen Liebezeit und Ziehe die Genauigkeit des Verfahrens erhöhen und den Datierungszeitraum erweitern.

Dr. Sibet Riexinger | idw
Weitere Informationen:
http://www.fh-wilhelmshaven.de/terramare/terramar.htm
http://www.terramare.de/date.htm

Weitere Berichte zu: Aminosäure Kohlenstoffatom Pflanze Wattboden Zeitmarke

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise