Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner entlocken Wolken ihre Geheimnisse

29.08.2001


Klima- und Wettervorhersagemodelle berücksichtigen derzeit die Wolken und ihr Eigenleben nur in sehr rudimentärer Weise. Der Lebenszyklus von Wolken und ihr Einfluss auf Wetter und Klima sind noch nicht ausreichend verstanden; außerdem lassen sie sich nur durch eine ausgefeilte Messstrategie ihre Geheimnisse entlocken. Genau das versucht momentan Prof. Dr. Clemens Simmer vom Meteorologischen Institut der Universität Bonn. Im Rahmen des Verbundprojekts "4D-WOLKEN", das vom BMBF mit etwa 4 Mio. DM gefördert wird, möchten Simmer und seine Mitarbeiter den Lebenszyklus von Wolken genau unter die Lupe nehmen.

In Cabauw in den Niederlanden wollen die Wissenschaftler der Frage nachgehen, in welchem Ausmaß Wolken die Sonnenstrahlung absorbieren, sich dabei erwärmen und so auch direkt die Atmosphäre aufheizen. Neuere Messungen scheinen zu zeigen, dass Wolken beträchtlich mehr Strahlung absorbieren als bislang angenommen. Hat dieser Effekt für die Wettervorhersage vermutlich nur geringe Auswirkungen, ist er für Klimamodelle von größter Bedeutung. Die Sonnenenergie würde gewissermaßen schon in der Atmosphäre "abgefangen" und nicht - wie in den Modellen bislang angenommen - größtenteils erst am Boden in Wärmestrahlung umgesetzt. Niedrigere Boden-Temperaturen in den Modellberechnungen wären die Folge, damit würde wiederum weniger feuchtwarme Luft in die Atmosphäre aufsteigen und sich als Resultat weniger Wolken bilden.

Für ihre Messungen greifen die beteiligten Forscher auch auf ein High-Tech-Gerät zurück, das von Dr. Susanne Crewell vom Meteorologischen Institut zusammen mit der Firma Radiometer Physics in Meckenheim entwickelt wurde. Das "Mehrkanal-Mikrowellenradiometer" liefert die derzeit genauesten Aussagen über den Flüssigwassergehalt von Wolken. Neben vielen anderen Fernerkundungsgeräten stehen den Wissenschaftlern drei Flugzeuge zur Verfügung, mit denen sie Zusammensetzung und Ausdehnung von Wolkenkomplexen vermessen können.

Die realitätsnahe Modellierung von Wolken ist überaus aufwändig. Ein weiteres Ziel ist daher, schnelle Rechenverfahren zu finden, die in den Klimamodellen eingesetzt werden können. Für den Erfolg kämpfen in Cabauw insgesamt etwa 25 Forschergruppen aus Deutschland, den Niederlanden, Frankreich, England, Schweden, Finnland, der Schweiz und Russland. Auch für die Lehre am Meteorologischen Institut wird das Experiment übrigens einen Beitrag liefern: Die Studierenden im Fortgeschrittenenpraktikum werden während der ersten zwei Septemberwochen vor Ort Standardmessverfahren der Meteorologie üben und in die modernste Technik der Wolkenvermessung eingeführt werden.


Weitere Informationen: Prof. Dr. Clemens Simmer, Meteorologisches Institut der Universität Bonn, Tel.: 0228/73-5181 oder -5181, Fax: 0228/73-5188, E-Mail: csimmer@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.meteo.uni-bonn.de/projekte/4d-clouds/bbc

Weitere Berichte zu: Lebenszyklus Meteorologisch Wolke

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie