Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feinstaub trägt zur Anreicherung von Schadstoffen im Boden bei

12.04.2005


Feinstaub ist nicht nur gefährlich, weil er leicht in die Lunge eindringen kann. An Rußpartikeln sitzen vielfach auch Krebs erzeugende Schadstoffe. Die Tübinger Geowissenschaftler Tilman Gocht, Prof. Peter Grathwohl und Dr. Johannes Barth haben festgestellt, dass sich diese Schadstoffe schleichend in Böden anreichern. Bisher ist noch nicht klar, ob sie abgebaut werden oder gar ins Grundwasser gelangen können.



Rußpartikel aus der Luft sind mit Krebs erzeugenden Verbindungen belastet



Der Feinstaub, der zum Beispiel mit den Abgasen von Dieselkraftfahrzeugen in die Luft geblasen wird, ist ins Bewusstsein von Medien und Menschen geraten. Grund ist vor allem das Inkrafttreten der EU-Richtlinie zur Begrenzung der Feinstaubkonzentration in der Luft. Gerade ihre Winzigkeit macht die Staubteilchen gefährlich: Sie werden von den Schutzvorrichtungen der Atemwege nicht aufgehalten und können direkt in die Lunge vordringen. Dort können sie Entzündungen, Asthma, Bronchitis oder auch Krebs auslösen. Doch die Rußpartikel können aus einem weiteren Grund zur Gefahr werden: Schadstoffe hängen sich in recht großer Menge und besonders fest an. Darunter sind vielfach die so genannten polyzyklischen aromatischen Kohlenwasserstoffe (PAKs), unter denen viele Verbindungen als Krebs erzeugend gelten. Tilman Gocht, Prof. Peter Grathwohl und Dr. Johannes Barth vom Zentrum für Angewandte Geowissenschaften der Universität Tübingen untersuchen, was passiert, wenn die Rußpartikel aus der Luft in die Böden gelangen. Sie haben festgestellt, dass die gefährlichen PAKs zumindest bisher praktisch nicht im Grundwasser zu finden sind. Doch da die PAKs kaum abgebaut werden, so haben die Tübinger Wissenschaftler beobachtet, reichern sie sich schleichend in den Böden an. Noch ist unklar, ob davon eine Gefahr ausgeht.

"Atmosphärenforscher interessieren sich für den Feinstaub vor allem so lange, wie er sich in der Luft befindet. Auch medizinisch gesehen sind die Partikel wegen ihrer Lungengängigkeit in dieser Phase besonders problematisch. Doch in der Luft ändert sich die Situation häufig schon mit dem nächsten Regenguss", erklärt Tilman Gocht. Für die Geowissenschaftler, die Böden und Grundwasser im Blick haben, spielten dagegen erst deutlich längere Zeiträume eine Rolle. "Die Rußpartikel, die wir untersuchen, fallen teilweise mit einer Größe ab einem Mikrometer unter den Begriff Feinstaub, der gerade in der Diskussion ist, zum Teil sind sie aber auch größer", sagt Gocht. Die Untersuchungen sind zum Teil in das große EU-Umweltforschungsprojekt "AquaTerra" eingebunden, das 45 Kooperationspartner in 12 EU-Ländern umfasst und vom Zentrum für Angewandte Geowissenschaften (ZAG) und der Attempto GMBH der Universität Tübingen geleitet wird. Die Rußpartikel sind hier vor allem als Träger Krebs erzeugender Stoffe ins Blickfeld geraten. "PAKs sind die Schadstoffe, die in der Umwelt in der höchsten Konzentration vorkommen. Erst danach kommen Quecksilber und Dioxine", so die Wissenschaftler. Zu den PAKs gehören rund 200 verschiedene Verbindungen, von denen meist 16 bis 20 typische Vertreter, darunter auch stark karzinogene, untersucht werden. In der Struktur ihrer Moleküle sind bis zu neun Kohlenstoffringe zu finden. Je mehr Ringe, desto schwerer sind sie in der Regel abbaubar. Darunter ist das mit fünf Ringen schwer abbaubare und karzinogene Benzo(a)pyren. Peter Grathwohl geht davon aus, dass die Rußpartikel mit den anhängenden Schadstoffen größtenteils aus dem Straßenverkehr stammen. "Die Zuordnung ist im Einzelnen schwierig. Doch unter dem Mikroskop kann ich an der Form der Partikel zumindest feststellen, aus welcher Art Brennstoff sie stammen, ob aus Öl, Holz oder Kohle", erklärt Tilman Gocht.

Seine Untersuchungen hat Gocht in ländlichen Gebieten durchgeführt, wo die Rußpartikel gleichmäßiger verteilt sind als in der Großstadt. Er hat im Schwarzwald und im Goldersbachtal im Schönbuch bei Tübingen in der Luft, im Boden und im Grundwasser die Rußpartikel sowie verschiedene PAKs gemessen. "Wir etablieren eine Art Massenbilanz: Was geht in ein bestimmtes Wasser-Einzugsgebiet hinein, was geht hinaus, was bleibt im Boden und wird dort möglicherweise umgesetzt oder gespeichert", erklärt Johannes Barth. Aus der Luft ließen sich die Partikel relativ leicht durch Filter auffangen, so Gocht. "Im Boden ist das viel aufwendiger. Da müssen die Rußpartikel mühsam von den anderen Bodenpartikeln getrennt und unter dem Mikroskop ausgezählt werden", sagt er. Doch die PAKs lassen sich messen: In der Luft waren sie vorhanden, fanden sich aber bisher kaum im Grundwasser und reichern sich stattdessen im Boden und dort in den obersten zehn Zentimetern an. "Der Boden filtert die Schadstoffe praktisch heraus", sagt Barth.

"Doch die Kapazität des Bodens könnte irgendwann erschöpft sein und die PAKs würden dann in kürzerer Zeit ausgewaschen. So ähnlich war es in der Vergangenheit bei der Versauerung von Gewässern: Ein halbes Jahrhundert lang scheint es nicht viel auszumachen und plötzlich - in ein oder zwei Jahren - kippt das System um", beschreibt Grathwohl denkbare Szenarien. "Bei solch komplexen Systemen kann es Dominoeffekte geben, die wir jetzt vielleicht noch gar nicht kennen." Die Wissenschaftler haben festgestellt, dass die PAKs im Boden sehr stabil sein müssen. "Aus Laboruntersuchungen ist bekannt, dass eine Reihe von Mikroorganismen die ringförmigen Verbindungen der PAKs gut abbauen kann. Je weniger Ringe die Verbindung enthält, desto leichter", erklärt Johannes Barth. Warum sich in den Böden draußen wenig Hinweise auf einen Abbau finden, sei noch ungeklärt. Über die Aufnahme in Nutzpflanzen könnten die PAKs auch den Menschen gefährden. Aus Messungen an Sedimenten haben die Tübinger Wissenschaftler rekonstruiert, wie viel PAKs in den letzten 200 Jahren in die Böden eingetragen wurden. "Der Höhepunkt fand sich in den 1970er-Jahren. Seither ist die Menge etwa um den Faktor zwei zurückgegangen. Obwohl der Verkehr seither noch zugenommen hat, zeigen sich darin die Anstrengungen, die Emissionen etwa durch den Einbau von Filtern bei Kraftwerken zu senken", erklärt Grathwohl. PAKs können prinzipiell auch auf natürliche Weise entstehen, zum Beispiel bei Waldbränden. "Die heute gemessenen Werte liegen aber um den Faktor zehn höher als die natürlichen", sagt der Professor.

Als problematisch sehen die Tübinger Wissenschaftler auch die flächendeckende Verteilung der Rußpartikel mit den anhängenden Schadstoffen an. "Wenn sich der Ruß aus der Luft etwa auf den weißen Gartenmöbeln absetzt, kann man ihn wieder abwaschen. Großflächig geht das mit dem Boden aber natürlich nicht", erklärt Grathwohl. "Darum wäre es viel einfacher, diese Stoffe konzentriert gleich an der Quelle ihrer Entstehung, etwa am Auspuff des Autos, aufzufangen", setzt Barth hinzu. "Damit würde man gleich zwei Fliegen mit einer Klappe schlagen: Sowohl der gefährliche Feinstaub als auch die Krebs erzeugenden Schadstoffe würden reduziert", gibt Gocht zu bedenken. Ob und welche Maßnahmen gegen den Ausstoß von Rußpartikeln ergriffen werden, sieht Peter Grathwohl auch als eine Risikoabwägung und Entscheidung von Politik und Gesellschaft: "Bei der Anreicherung der PAKs im Boden können wir von wissenschaftlicher Seite bisher nur sagen, dass wir einen Trend beobachten, der nach oben zeigt. Wir stehen erst am Anfang."

Die Tübinger Wissenschaftler wollen daher als Teil des "AquaTerra"-Projektes klären, was langfristig mit den Schadstoffen im Boden passiert. Sie gehen nicht zwangsläufig von einer problematischen Entwicklung aus. Denn sie können bisher nicht ausschließen, dass vor einer Verlagerung der PAKs ins Grundwasser natürliche Gegenmechanismen greifen. Zum Beispiel könnte unter bestimmten Bedingungen der biologische Abbau der Schadstoffe noch in Gang kommen oder sie könnten endgültig im Boden festgelegt und so unschädlich gemacht werden.

Nähere Informationen:

Prof. Dr. Peter Grathwohl, Tel.: (07071) 29-75429; E-Mail: grathwohl@uni-tuebingen.de
Tilman Gocht, Tel.: (07071) 29-75041; E-Mail: tilman.gocht@uni-tuebingen.de
Dr. Johannes Barth, Tel.: (07071) 29-78928; E-Mail: johannes.barth@uni-tuebingen.de

Zentrum für Angewandte Geowissenschaften, Sigwartstraße 10, 72076 Tübingen

Der Pressedienst im Internet: www.uni-tuebingen.de/uni/qvo/pd/pd.html
Dort sind auch fünf Abbildungen zu finden, die wir auf Wunsch hoch aufgelöst zusenden.

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/geo/zag/grathwohl/
http://www.eu-aquaterra.de
http://www.uni-tuebingen.de/gracos/

Weitere Berichte zu: Boden Feinstaub Grundwasser PAKs Rußpartikel Schadstoff

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise