Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachweis gelungen: Bakterienzellen in der Tiefen Biosphäre sind lebendig!

25.02.2005


An Bord des Forschungsschiffs Joides Resolution.Bild: ODP Program, www.iodp.org


Das Forschungsschiff Joides Resolution, auf dem die Forscher auf dem Fahrtsabschnitt 201 (Leg 201) im östlichen Pazifik unterwegs waren. Bild: ODP Program, www.iodp.org


Internationales Forscherteam entdeckt Leben unterhalb des Meeresbodens


Was sich in der Tiefen Biosphäre unterhalb des Meeresbodens abspielt, konnte man lange Zeit nur ahnen. Jetzt hat die Auswertung der Daten eines internationalen Forscherteams gezeigt, dass die Bohrkerne aus dem östlichen Pazifik lebendige Bakterien enthalten. Beteiligt war das Team um Dr. Axel Schippers von der Bundesanstalt für Geologie und Rohstoffe in Hannover zusammen mit Kollegen vom Bremer Max-Planck-Institut für marine Mikrobiologie und Wissenschaftlern des GeoForschungszentrums Potsdam sowie der School of Earth, Ocean and Planetary Sciences in Wales, UK. Schippers konnte mit neu entwickelten empfindlichen Nachweistechniken erstmals zeigen, dass in den reichlich vorhandenen Zellen ein wichtiger Bestandteil allen Lebens vorkommt, die sehr instabile ribosomale RNA. Die Forscher fanden lebendige Zellen in bis zu 16 Millionen Jahre alten Sedimenten (Nature, 24. Februar 2005).

Marine Sedimente bedecken etwa 70 % der Erdoberfläche und man schätzt anhand von ausgewerteten Bohrungen, dass ungefähr 10 - 30 % aller Mikroorganismen dort tief verborgen sind. In den oberen Schichten fanden die Forscher bei einer Ausfahrt mit dem Forschungsbohrschiff Joides Resolution 100 Millionen Zellen pro Milliliter, bis zu einer Tiefe von 40 Metern sank dieser Wert auf eine Million pro Milliliter ab. In 400 Metern Tiefe fanden die Forscher in der Probe immerhin noch 100 000 Zellen.


Die Wissenschaftler standen jedoch vor dem Problem zu unterscheiden, ob es sich bei diesen Zellen um lebendige oder tote handelt. Schippers und Kollegen gelang es, mit zwei hochempfindlichen Methoden einen Zellbestandteil nachzuweisen, der nur in lebenden Zellen zu finden ist: Ribosomale RNA (Ribonukleinsäure). Diese RNA-Moleküle sind Bestandteil des Proteinsyntheseapparats und damit lebensnotwendig für alle Arten von Zellen. Am Ribosom entstehen wie am Fließband neue Proteine und Werkzeuge (Enzyme), die die Zelle zum Leben braucht.

Die CARD-FISH-Technik und die quantitative Polymerase-Chain-Reaction (Q-PCR) sind zurzeit die empfindlichsten Methoden, mit denen man lebende Zellen nachweisen kann. Beide Techniken wurden am Bremer Max-Planck-Institut für marine Mikrobiologie erstmals zur Anwendung von Meeressedimenten optimiert und erfolgreich eingesetzt. Dabei nutzten die Forscher die spezifische Bindung eines kurzen Stücks einzelsträngiger DNA (Gensonde, Primer bzw. Oligonukleotid) an die in den Mikroorganismen vorhandenen Sequenzen auf der ribosomalen RNA. Bei der Q-PCR wird ein Stück dieser labilen ribosomalen RNA in eine DNA-Kopie umgeschrieben und dann künstlich vermehrt. Bei diesem Prozess wird ein Farbstoffmolekül in das Produkt eingebaut, das man quantitativ genau erfassen kann. So konnten die Forscher die Anzahl der Ausgangsmoleküle in der Probe bestimmen.

Bei der CARD-FISH-Methode besteht der Trick darin, an eine spezifische Gensonde ein aktives Enzym zu koppeln, das eine starke Farbreaktion bei entsprechender Behandlung hervorruft. Gensonde mit Enzym müssen nun in die Zellen geschleust werden, die Probe angefärbt und unter dem Mikroskop ausgewertet werden. Nur in den Zellen, in denen die Gensonde andocken konnte, erkennt man ein deutliches Signal. Die erhaltenen Lebend-Zellzahlen verglichen die Forscher mit der Gesamtzellzahl, die auch tote Zellen mit einschließt. Bei den Bohrkernen im östlichen Pazifik sind nach CARD-FISH- und Q-PCR-Analyse mindestens zwischen 10 bis 30 % aller Zellen lebendig. Mit diesen Werkzeugen gelang es Schippers und Kollegen auch, die Tiefenverteilung der Spezies an verschiedenen Standorten zu vergleichen. An den Ozeanrändern fanden sie deutlich mehr Bakterien als Archaeen, die typischen Einzeller der extremen Standorte. Je tiefer sie bohrten, umso geringer wurde der Anteil an Archaeen.

Von anderen Messungen am selben Bohrkern schätzten die Forscher, wieviel Biomasse im Meeresboden neu entsteht. Zusammen mit der Anzahl lebendiger Zellen konnten sie jetzt berechnen, wie lang ihre Verdopplungszeit ist. Zu ihrer Überraschung teilen sich die Bewohner der Tiefe genauso schnell wie ihre auf dem Meeresboden lebenden Vettern. Je nach Art kamen sie auf Werte von einem Viertel Jahr bis zu 22 Jahren. Sie wachsen langsam, aber im geologischen Zeitrahmen spielen sie eine wichtige Rolle. Sie leben, aber ihr Leben läuft sehr langsam ab. Was sie genau machen und welchen Einfluss sie auf die globalen Kreisläufe und das Weltklima nehmen, bleibt noch zu erforschen.

Verwandte Links:

[1] BGR: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
www.bgr.de

[2] Max-Planck-Institut für marine Mikrobiologie, Bremen
www.mpi-bremen.de/Max-Planck-Institut_fuer_marine_Mikrobiologie_in_Bremen.html

[3] GeoForschungsZentrum Potsdam
www.gfz-potsdam.de

[4] School of Earth, Ocean and Planetary Sciences, Cardiff University, Wales, UK
www.earth.cardiff.ac.uk/

Dr. Axel Schippers | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Biosphäre Bohrkern Enzym Gensonde Meeresboden Probe RNA

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt
05.12.2016 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Bindegewebe unter Strom

08.12.2016 | Biowissenschaften Chemie

Eine Extra-Sekunde zum neuen Jahr

08.12.2016 | Physik Astronomie

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops