Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Grüße aus der Wüste

30.09.2004


Sauerstoff-Isotopenzusammensetzung in einem Gebiet der Größe 9 mal 9 Quadratmikrometer im Acfer 094-Meteoriten. Der Sternenstaub (im Zentrum der Kreise) zeigt eine markante Erhöhung des sehr seltenen Isotops mit der Massenzahl 17 (verglichen mit der Sauerstoff-Isotopenzusammensetzung im Sonnensystem). Bild: Max-Planck-Institut für Chemie


Wissenschaftler am Max-Planck-Institut für Chemie haben große Mengen an Sternenstaub in einem Meteoriten gefunden


Sternenstaub findet sich gewöhnlich nur in sehr kleinen Mengen in primitiver Materie unseres Sonnensystems. Mit einer neuartigen Technik, einer NanoSIMS-Ionenmikrosonde, ist es Forschern am Max-Planck-Institut für Chemie in Mainz jetzt gelungen, hohe Konzentrationen an Silikat- und Spinellstaub, der vor mehr als 4,6 Milliarden Jahren in den Winden von Roten Riesensternen kondensiert ist, in einem Wüstenmeteoriten zu identifizieren. Die Isotopenzusammensetzungen der nur 100 bis 600 Nanometer großen Partikel weichen stark von denjenigen unseres Sonnensystems ab und können durch kernphysikalische Prozesse in den Muttersternen und die chemische Evolution unserer Milchstraße erklärt werden (Astrophysical Journal Letters, 1. Oktober 2004, Vorabveröffentlichung 31. August 2004).

Als unser Sonnensystem vor etwa 4,6 Milliarden Jahren durch den Kollaps einer interstellaren Gas- und Staubwolke entstand, wurde der größte Teil des präsolaren Staubs durch die dabei freigesetzte Wärme zerstört. Relikte des präsolaren Staubs finden sich heute nur noch in kleinen, thermisch wenig veränderten planetaren Körpern. Erstmals gelang es 1987 präsolaren Staub in Form von Siliziumkarbid und Nanodiamanten in primitiven Meteoriten nachzuweisen. Während das sehr seltene Siliziumkarbid (einige Tausendstel Promille des Meteoritenmaterials) unstrittig Sternenstaub repräsentiert, konnte der Anteil des Sternenstaubs an den in größerer Konzentration vorkommenden Nanodiamanten bis heute nicht bestimmt werden.


Forschern vom Max-Planck-Institut für Chemie in Mainz ist es nun gelungen, sehr hohe Konzentrationen an Sternenstaub in einem Meteoriten namens Acfer 094 zu identifizieren. Dieser Meteorit wurde 1990 in der Sahara gefunden und repräsentiert eine der primitivsten Materien unseres Sonnensystems. Die von den Mainzer Forschern gefundenen präsolaren Silikat- und Spinellkörner stellen mehr als ein Zehntel Promille des Meteoritenmaterials. "Sternenstaub in einer solch hohen Konzentration in einem Meteoriten zu finden, hatten wir nicht für möglich gehalten", so Dr. Peter Hoppe vom Mainzer Max-Planck-Institut. Entscheidend für das Auffinden der nur 100 bis 600 Nanometer großen Partikel war der Einsatz der NanoSIMS, einer neuartigen Ionenmikrosonde, die erst kürzlich am Mainzer Max-Planck-Institut in Betrieb genommen wurde. Mit diesem Instrument können Schliffe von Meteoritengestein systematisch in situ nach Sternenstaub abgesucht werden. Damit wird das vormals angewandte, sehr aufwändige chemische und physikalische Separieren von Sternenstaub vermieden.

Isotopenuntersuchungen an Sternenstaub erlauben es, wichtige Erkenntnisse zur Entstehung der chemischen Elemente sowie der kernphysikalischen Prozesse in Sternen zu gewinnen. Aus der Sauerstoff-Isotopenzusammensetzung der von den Mainzer Forschern gefundenen Silikat- und Spinellkörner (s. Abb.) konnte geschlossen werden, dass diese in den Winden Roter Riesensterne kondensiert sind. Fingerabdrücke der chemischen Evolution unserer Milchstraße finden sich in der Silizium-Isotopenzusammensetzung der Silikatkörner. Dies bestätigt frühere Schlussfolgerungen, die aus Messungen an präsolarem Siliziumkarbid gewonnen wurden. Anders als in den Muttersternen des Siliziumkarbids wird die Silizium-Isotopenzusammensetzung in den Muttersternen der präsolaren Silikate im Verlaufe der stellaren Evolution nur wenig verändert. "Daher kann man die chemische Evolution von Silizium und anderer Elemente in unserer Milchstraße in präsolaren Silikaten wesentlich direkter verfolgen", sagt Peter Hoppe.

Die erfolgreiche Identifizierung großer Mengen an Sternenstaub in einem Meteoriten lässt die Mainzer Forscher zuversichtlich einem weiteren Meilenstein in der Sternenstaubforschung entgegenblicken: Im Januar 2006 soll die STARDUST-Sonde Kometenstaub, das wohl ursprünglichste Material unseres Sonnensystems, auf die Erde bringen. Dann, so hoffen die Mainzer Forscher, wird ihre NanoSIMS dem Sternenstaub weitere Geheimnisse entlocken können.

Originalveröffentlichung: Mostefaoui, S. and Hoppe, P. Discovery of abundant in situ silicate and spinel grains from red giant stars in a primitive meteorite. Astrophysical Journal Letters, 613, 1. October 2004; published online 31. August 2004, http://www.journals.uchicago.edu/ApJ/journal/contents/ApJL/v613n2.html

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de
http://www.journals.uchicago.edu/ApJ/journal/contents/ApJL/v613n2.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Meeresforschung in Echtzeit verfolgen
22.02.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Weniger Sauerstoff in allen Meeren
16.02.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie