Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorzeitliches Klimaphänomen: Islandtief und Azorenhoch

13.05.2004


Klimaduo älter als gedacht


Unterwasseraufnahme einer Korallenkolonie im nördlichen Roten Meer: Die etwa zwei Meter hohe Kolonie hat in ihrem massiven Kalkskelett Informationen über das Klima der letzten 200 Jahre gespeichert.


Röntgenbild eines Korallenbohrkerns. Die verschieden hellen Bänder kommen durch Unterschiede im Kalkskelett der Koralle zu Stande. Ein dunkles (hohe Skelettdichte) und ein helles Band (niedrige Skelettdichte) zusammen repräsentieren jeweils ein Jahr.



Islandtief und Azorenhoch bestimmen das Winterwetter in unseren Breiten - und das auch schon vor über 120.000 Jahren. Dies hat ein internationales Team um Dr. Thomas Felis und Dr. Gerrit Lohmann vom DFG-Forschungszentrum Ozeanränder der Universität Bremen jetzt nachgewiesen. Zusammen mit jordanischen Forschern untersuchten sie die chemische Zusammensetzung fossiler Korallen aus dem nördlichen Roten Meer im Vergleich mit einem Klimamodell. Die Ergebnisse erscheinen am 13. Mai 2004 in der Wissenschaftszeitschrift "nature".

... mehr zu:
»Azorenhoch »Islandtief »Oszillation


Unterwasseraufnahme einer Korallenkolonie im nördlichen Roten Meer: Die etwa zwei Meter hohe Kolonie hat in ihrem massiven Kalkskelett Informationen über das Klima der letzten 200 Jahre gespeichert.

Röntgenbild eines Korallenbohrkerns. Die verschieden hellen Bänder kommen durch Unterschiede im Kalkskelett der Koralle zu Stande. Ein dunkles (hohe Skelettdichte) und ein helles Band (niedrige Skelettdichte) zusammen repräsentieren jeweils ein Jahr.
Das Duo aus Azorenhoch und Islandtief bestimmt das winterliche Klima rund um den Nordatlantik. Der Unterschied zwischen den beiden Luftdruck-Systemen ist entscheidend. Allerdings wirkt er sich nicht überall gleich aus: So sorgt ein großer Unterschied im Luftdruck für milde und feuchte Winter in Zentraleuropa. Im Nahen Osten, dem Untersuchungsgebiet, bedeutet dieser Zustand kalte und trockene Winter. Die Größe des Unterschieds schwankt in einem Zyklus von mehreren Jahren. Forscher bezeichnen dieses Phänomen daher als die Nordatlantische Oszillation (NAO). Aus den Wetteraufzeichnungen der letzten 100 Jahre sind die typischen NAO-Schwankungen gut bekannt. "Und genau diese zeitlichen Schwankungen haben wir auch in den Korallen aus dem nördlichen Roten Meer gefunden", sagt der Klimaforscher Thomas Felis. "Nicht nur in den heutigen, sondern auch in den 3.000 bzw. 122.000 Jahre alten Korallen, die wir untersucht haben. Dies kann nur heißen, dass es dieses Klimaphänomen damals schon gab." Simulationen mit einem Klimamodell zeigten, dass vor 122.000 Jahren der Unterschied zwischen Azorenhoch und Islandtief sogar besonders stark ausgeprägt war. "Zusammen mit der damals im Winter geringeren Sonneneinstrahlung sorgte dies dafür, dass die Winter im Nahen Osten kälter waren als heute. Die Sommer hingegen waren wärmer", setzt sein Kollege Gerrit Lohmann hinzu. "Das Modell bestätigt also die Messungen aus den Korallen, die einen größeren Unterschied zwischen Winter- und Sommertemperaturen für damals anzeigen", freuen sich Felis und Lohmann.

"Steinkorallen der Gattung Porites eignen sich hervorragend, um zu untersuchen, wie das Klima in der Vergangenheit war", erklärt Thomas Felis. Denn: Sie bilden in ihrem Kalkskelett Jahresbänder, ähnlich wie die Jahresringe unserer Bäume. Jedes Jahr lagern die Korallen etwa einen Zentimeter neuen Kalk ab, dessen chemische Zusammensetzung die Wassertemperatur dokumentiert. "Untersuchen wir den Kalk, können wir also zurückverfolgen, wie die Wassertemperatur im Laufe eines Jahres schwankte. Und zwar über die Lebensdauer der Koralle, auch wenn sie - wie in diesem Fall - vor mehr als 120.000 Jahren lebte." Das nördliche Rote Meer ist eine der wenigen Stellen, wo diese Warmwasser-Korallen so weit nördlich gedeihen können, dass ihr Skelett die Nordatlantische Oszillation dokumentiert.

Mit Hilfe eines ausgefeilten Klima-Rechenmodells hat Gerrit Lohmann zusammen mit seinen Kollegen die direkt aus den Korallen gewonnenen Daten überprüft. Vor 122.000 Jahren, also zwischen den letzten beiden Eiszeiten, befand sich die Erde, wie heute, in einer Warmzeit. "Für unsere Klima-Berechnungen haben wir daher angenommen, dass damals die Rahmenbedingungen sehr ähnlich waren wie heute", sagt Lohmann. "Also haben wir nur die Sonneneinstrahlung der damaligen Stellung der Erde zur Sonne angepasst. Und siehe da: unser Modell bestätigt die Ergebnisse aus den Korallen." Die Simulation zeigt auch für den Rest der Nordhalbkugel das für eine stark ausgeprägte Nordatlantische Oszillation typische Temperaturmuster: kältere Winter im Nahen Osten und wärmere Winter in Zentral-Europa.

Die übereinstimmenden Daten des Klimamodells und der Korallen-Untersuchung beweisen erstmals, dass die Nordatlantische Oszillation über Jahrhunderttausende hinweg regionale Unterschiede im Klima hervorrufen kann. Solche Übereinstimmungen sind wichtig, um die Modelle zur Klimavorhersage mit gesicherten Daten aus der Vergangenheit zu testen.

Weitere Informationen:
Kirsten Achenbach
Öffentlichkeitsarbeit
DFG Forschungszentrum Ozeanränder
Tel. 0421 - 218-9000, Fax: -3116
Mail: achenbach@rcom-bremen.de

Dr. Thomas Felis
DFG Forschungszentrum Ozeanränder
Tel: 0421 - 218-7769
Mail: tfelis@allgeo.uni-bremen.de

Kirsten Achenbach | idw
Weitere Informationen:
http://www.rcom-bremen.de
http://www.rcom-bremen.de/Dr._Thomas_Felis.html

Weitere Berichte zu: Azorenhoch Islandtief Oszillation

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics