Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der eiernde Planet: Bonner Geodäten vermessen die Erde

05.05.2004



Das kleine Örtchen Laufenburg an der Deutsch-Schweizer Grenze wurde im vergangenen Dezember kurzzeitig berühmt: Die von Schweizer Seite her gebaute neue Rheinbrücke und ihre Anbindung am deutschen Ufer wichen in der Höhe um 54 Zentimeter voneinander ab; "Rheinbrücke mit Treppe" spottete prompt der "Spiegel". Grund für den Schildbürgerstreich: Deutschland bezieht sich bei Höhenangaben auf den Meeresspiegel der Nordsee, die Schweiz auf das Mittelmeer. Dazwischen klafft aber eine Lücke von 27 Zentimeter, die das Planungsbüro leider "falsch herum" korrigierte. Um Pannen wie solche tunlichst zu vermeiden, arbeiten Geodäten auf der ganzen Welt an international verbindlichen Koordinatensystemen. Auch das Geodätische Institut der Universität Bonn legt regelmäßig das Maßband an unseren Heimatplaneten.

... mehr zu:
»Geodaten »Planet »Radioteleskop »VLBI

Auch das Radioteleskop Wettzell (20 Meter Durchmesser, im Bayerischen Wald bei Kötzting), betrieben vom Bundesamt für Kartographie und Geodäsie und der TU München, wird regelmäßig für Messungen "eingespannt".

Immer montags und donnerstags messen die Bonner Geodäten die Erdrotation.

"Na ja", relativiert Dr. Axel Nothnagel, Forschungs-gruppenleiter am Geodätischen Institut, "Messungen führen wir streng genommen nicht durch - das übernimmt ein Netz von Radioteleskopen in Europa, Japan und Amerika. Wir planen, welches Teleskop zu welcher Zeit welches Objekt anpeilen soll und wer die anfallenden Daten dann auswertet." Das aber auf einige Zeit im Voraus: Bis 2005 sind die ständig wechselnden Beobachtungsnetze bereits festgelegt.

Grund für den Aufwand: Unsere Erde eiert. Die Tageslänge kann sich binnen 24 Stunden um bis zu eine Millisekunde ändern. In Jahren mit dem Klimaphänomen "El Niño" dreht sich die Erde merklich langsamer um ihre Achse, wahrscheinlich wegen der geänderten Verteilung der Luftmassen und der Strömungsverhältnisse in den Weltmeeren. "Für die Navigation von Flugkörpern im Weltraum benötigt man aber unter anderem die genaue Drehstellung der Erde, um die Position der Sonde im Weltraum berechnen und die Steuerdüsen zum richtigen Zeitpunkt auslösen zu können", erklärt der Privatdozent. Außerdem taumelt die Erde wie ein Kreisel um seine Rotationsachse. Von einem geostationären Satelliten aus betrachtet, wandern Straßen, Städte, Flüsse und Berge im Laufe eines halben Jahres um bis zu 15 Meter hin und her. Ohne ständige Korrektur würde daher die GPS-navigierte Limousine bald nicht mehr auf der Straße fahren, sondern auf dem Acker nebenan.

Wichtigstes Messverfahren der Geodäten ist die so genannte VLBI (Very Long Baseline Interferometry). Dabei kommen Paare von Radioteleskopen zum Einsatz, die mehrere tausend Kilometer voneinander entfernt sind. Mit ihnen peilen die Wissenschaftler starke punktförmige Radioquellen am Rande des bekannten Universums an, die Quasare. Sie dienen bei der Messung als Fixpunkte. Weil die Messstationen auf der Erde so weit voneinander entfernt sind, empfangen sie die Radiosignale mit einem geringen zeitlichen Abstand. "Aus dieser Differenz kann der Computer beispielsweise die Drehstellung der Erde berechnen, aber auch den Abstand zwischen den Radioteleskopen - und das bis zu einer Genauigkeit von zwei Millimetern pro 1.000 Kilometer", so Dr. Nothnagel nicht ohne Stolz. So lässt sich mit VLBI auch nachweisen, dass Europa und Nordamerika sich nicht nur politisch voneinander entfernen: Der Abstand wächst jährlich um fast zwei Zentimeter.

Ein paar Tage vor einer VLBI-Messung schickt das Bonner Team eine Mail mit den berechneten Beobachtungszeiten und anzupeilenden Zielen an die beteiligten Radioteleskope. Durch Atomuhrsignale synchronisiert, richten sich überall auf der Welt zeitgleich die riesigen schüsselförmigen Antennen aus. Jede Station peilt in einem 24-Stunden-Messzyklus 200 bis 300 vorher festgelegte Quasare an und zeichnet auf speziellen Magnetbändern oder -platten die empfangenen Signale auf. Dabei kommen leicht mehrere Terrabit zusammen - das entspricht pro Station der Datenmenge auf rund 220 DVDs. Per Kurier gehen die Daten sämtlicher Stationen dann an einen so genannten "Korrelator", von denen es weltweit nur drei Exemplare gibt. Das Gerät bestimmt die Laufzeitunterschiede der Quasarsignale, aus denen dann Koordinaten, die Erdstellung und andere Werte berechnet werden.

"Diese Berechnungen nehmen wir teilweise auch hier in Bonn vor", erklärt Nothnagel: Einer der Korrelatoren steht am Bonner Max-Planck-Institut für Radioastronomie (MPIfR); die Geodäten nutzen ihn im Rahmen einer Vereinbarung zwischen dem Geodätischen Institut, dem MPIfR und dem Bundesamt für Kartographie und Geodäsie. Der Bonner Privatdozent: "Unter den Einrichtungen, die sich mit VLBI beschäftigen, gehören wir international zu den fünf größten; als Koordinationsstelle ist unser Institut weltweit gefragt."

Ansprechpartner:

Privatdozent Dr. Axel Nothnagel
Geodätisches Institut der Universität Bonn
(Geschäftsführender Direktor Professor Dr. Heiner Kuhlmann)
Telefon: 0228/73-3574
E-Mail: nothnagel@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Geodaten Planet Radioteleskop VLBI

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise