Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eismann vom Ötztal stammt aus dem Südtirol

31.10.2003


Der Heimatort des 5200 Jahre alten Eismanns konnte mit Hilfe von Isotopenmessungen von Proben aus seinen Zähnen, Knochen und seines Darms ausfindig gemacht werden. Ein internationales Forscherteam, unter Leitung von Dr. Wolfgang Müller, ANU (Australian National University) und unter Beteiligung von Geologen der ETH Zürich, publiziert neue Forschungsergebnisse über den Eismann in der neuesten Ausgabe der Zeitschrift ’Science’.

... mehr zu:
»ANU »ETH »Knochen

Die bestens erhaltene Mumie, die landläufig als Eismann bekannt ist, wurde 1991 in der italienisch-österreichischen Grenzregion in einem Gletscher gefunden. Der Eismann war zum Zeitpunkt seines Todes ungefähr 46 Jahre alt. Seine gut erhaltenen Überreste und seine Ausrüstung geben einen noch nie da gewesenen Einblick in die frühe Zivilisation Zentraleuropas.

Die Herkunft des Mannes - und die Kultur, der er angehörte - blieben allerdings lange im Verborgenen. Eine neue Studie unter Leitung von Dr. Wolfgang Müller von der Australian National University (ANU) und unter Beteiligung von Geologen der ETH Zürich zeigt nun, dass der Eismann aus einem etwa 60 Kilometer südöstlich seiner Fundstelle gelegenen Tal stammt.


Diese Ergebnisse wurden heute im Magazin Science veröffentlicht und belegt, dass die Alpentäler Zentraleuropas im Spätneolithikum vor über 5000 Jahren dauerhaft bewohnt waren.

"Wir können sicher sagen, dass der Eismann in seiner angestammten Region starb - nämlich in der Region des heutigen Südtirols/Alto Adige, im Grenzgebiet zwischen Italien und Österreich. Hier hatte er sich offenbar niedergelassen hatte. Dies lässt den Schluss zu, dass auch viele andere Menschen dort gelebt haben müssen", sagt Dr. Müller.

"Diese Erkenntnis erlaubt uns einen ganz neuen Einblick in die Geschichte der Menschheit. Wir hoffen, nun in der Lage zu sein, eines der letzten grossen Geheimnisse des Eismannes lüften zu können."

Dr. Müller begann seine Studie zusammen mit Professor Alex Halliday an der ETH Zürich.

"Die Informationen, die uns der Eismann über die Entwicklung der europäischen Zivilisation liefert, führen direkt zu den zentralen Fragen unserer Herkunft - warum sind wir hier und woher kommen wir", sagt Dr. Halliday.

"Durch die Weiterentwicklung der Isotopenanalyse sind auch deren potentielle Anwendungsbereiche zahlreicher geworden. Die Forschungsarbeiten an der ETH Zürich reichen heute von Arbeiten über die Herkunft der Planeten bis hin zu Arbeiten über die Herkunft des Menschen. In diesen Wissenschaftszweigen herrscht ein regelrechter Boom."

Dr. Müller wechselte von der ETH Zürich an die ANU in Canberra, von wo aus er das internationale Forschungsteam leitete, das die isotopische Zusammensetzung der Zähne, Knochen und des Darminhalts des Eismannes mit den vor Ort gegebenen geologischen und hydrologischen Verhältnissen verglich, um dessen Wohngebiet und den Umkreis seiner Reisetätigkeit von seiner Kindheit an bis ins Erwachsenenalter zu untersuchen.

Die Zähne sagen viel über die frühe Kindheit aus, während die Knochen einen Einblick ins Erwachsenenalter des Eismannes erlauben. Knochen werden kontinuierlich umgebaut und zeigen daher in ihrer Zusammensetzung im Durchschnitt die letzten 10 bis 20 Lebensjahre auf.

Durch den Vergleich der Analysedaten von Zahnschmelz, Knochen und Darmüberresten stellten die Forschenden fest, dass der Eismann umhergezogen ist. Sowohl die Gesteinsarten wie auch die Wasserverbindungen weiter südlich - in der heutigen Po-Ebene und im südlichen Adige - stimmen jedoch nicht mit denjenigen überein, die in seinen Zähnen und Knochen gefunden wurden. Die Forscher schliessen daraus, dass der Eismann wahrscheinlich in den Alpentälern der Region umherwanderte und die Alpen nicht überquerte.

"Wir können die Zusammensetzung der Erde und des Gesteins, auf denen die Nahrung des Mannes gewachsen ist, aufgrund zweier Arten von Isotopen rekonstruieren. Es handelt sich dabei um Strontium (Sr) und Blei (Pb), welche wir in den eingelagerten Spurenelementen (Mineralstoffe) seiner Überreste fanden. Dies ist deshalb von Bedeutung, weil wir in dieser Region verschiedene, isotopisch unterschiedliche Gesteinsarten (Kalkstein, Gneis, Vulkangestein) gefunden haben", sagt Dr. Müller.

"Zudem ermöglichen Sauerstoffisotope eine Rekonstruktion der Zusammensetzung des vom Eismann eingenommenen Wassers. Da die isotopische Zusammensetzung von Regenwasser von dessen Herkunft und vom Umstand abhängt, wie weit eine Wolke über das Festland zieht, bevor Regen fällt, sind die Regenwasserisotope nördlich und südlich der Fundstelle grundlegend verschieden. Wir können deshalb annehmen, dass der Eismann sein ganzes Leben südlich der Alpen verbracht hat."

Anke Poiger | idw
Weitere Informationen:
http://www.anu.edu.au/mac/media/index.html

Weitere Berichte zu: ANU ETH Knochen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie