Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ist es möglich, drohende Erdbeben vorherzusagen?

15.01.2003




Geologen untersuchen Erdbebenzone in der Türkei


Kaum ein Land in Europa wird so häufig von Erdbeben heimgesucht wie die Türkei. Am Boden des Marmarameeres - einem Binnenmeer im Nordwesten der Türkei, das mit dem Schwarzen Meer durch den Bosporus und mit dem Ägäischen Meer durch die Dardanellen verbunden ist - gibt es eine Erdbebenzone, die Geologen von der Freien Universität Berlin wissenschaftlich untersucht haben. Bei der Analyse von entnommenen Sedimenten kamen sie zu überraschenden Ergebnissen: Sie stellten eine bis dahin nicht bekannte sprunghafte Veränderung des Methangehaltes im Sediment in einer Tiefe von vier Metern fest; diese Methansprungschicht ist über die Zeit hinweg offensichtlich gewandert. Mit Hilfe von Computer-Modellierungen konnten sie schließen, dass in einem bestimmten Störungsbereich des Marmarameeres vor 1063 Jahren ein sehr schweres Erdbeben stattgefunden haben muss: Literaturquellen bestätigen dieses Beben. Es scheint also einen Zusammenhang zwischen tektonischer Beanspruchung und Gasaufstieg zu geben. Das Forscherteam will nun prüfen, ob durch die Langzeit-Messung von Methanaustritt am Meeresboden auch eine frühzeitige Erdbebenvorhersage und damit der Schutz vieler Menschen möglich ist. Das Projekt wird durch die Deutsche Forschungsgemeinschaft (DFG) gefördert.

Die Türkei liegt in einer Erdbebenzone. Durch Nordanatolien und das Marmarameer bis nach Griechenland erstreckt sich die nordanatolische Bruchzone mit der Ganos-Störung im Marmarameer, entlang derer es immer wieder zu Erdbeben kommt. "Das letzte große Erdbeben war das Izmit-Beben 1999; dabei starben 30.000 Menschen", erzählt Prof. Dr. Peter Halbach, Leiter der Fachrichtung Geochemie an der Freien Universität Berlin. Er beschäftigt sich seit Jahren mit dieser Gegend.


1999 ging er mit seiner Abteilung auf Forschungsreise. Mit dem DFG-Schiff Meteor, dem zweitgrößten deutschen Forschungsschiff, durchquerten sie das Marmarameer. Die Berliner Wissenschaftler führten zusammen mit türkischen Kollegen im Rahmen des Marmara-Flux-Projektes ihre Untersuchungen durch. Sie filmten den Meeresboden in der Störungszone, entnahmen Sedimentkerne und entdeckten im Bereich der Störungszone Bakterienmatten.

Noch an Bord untersuchten sie die Sedimente hinsichtlich ihres Gasgehaltes. Und das Ergebnis war erstaunlich: Sulfat, das im Porenwasser der Sedimente gelöst enthalten ist, nahm bis in eine Tiefe von vier Metern leicht ab, dann ging seine Konzentration sprunghaft gegen Null. Gebundenes Methan ist in diesem Fall in den oberen vier Metern des Sedimentes nicht nachweisbar, dahingegen steigt sein Gehalt ab einer Tiefe von vier Metern stark an.

Die Berliner Geologen waren somit auf ein erstaunliches Phänomen gestoßen, und sie fanden eine Erklärung dafür. Es war bereits bekannt, dass der Sulfatgehalt im Sediment mit der Tiefe gleichmäßig abnimmt und dass Sulfat und Methan miteinander reagieren. Berechnungen ergaben, dass die Reaktion dieser beiden Komponenten ursprünglich in 33 Metern Tiefe begonnen hatte. Ihre Reaktionszone wanderte nach oben und befindet sich in den untersuchten Sedimentkernen heute in vier Metern Tiefe; an Stellen wo die Bakterienmatten existieren, ist sie offensichtlich unmittelbar am Meeresboden. Das System der beiden Reaktionspartner muss demnach gestört worden sein. Die Wissenschaftler meinen, dass die Wanderungsbewegung durch ein tektonisches Großereignis ausgelöst worden sei. "Dadurch entstanden Risse und Spalten, die es dem Methan ermöglichten, schnell und in größeren Mengen im Sediment nach oben zu steigen", erklärt Peter Halbach.

Durch mehrere Computer-Modellierungen konnte Dr. Ekkehard Holzbecher, ein weiterer Mitarbeiter im Projekt, diese Prozesse rekonstruieren. Sie ergaben, dass es vor 1063 Jahren ein Erdbeben im tiefen Marmarameer gegeben hat. Durch Recherchen in der internationalen Literatur über vergangene tektonische Aktivitäten in dieser Region konnte ein starkes Erdbeben bestätigt werden. Sein Epizentrum befand sich in unmittelbarer Nähe der Entnahmestelle des Sedimentkerns.

Ein weiteres spektakuläres Ergebnis erbrachten die Bilder vom Meeresboden. Mit Hilfe einer Videokamera wurden erstmalig Gasaustrittsstellen am Boden des Marmarameeres entlang der Ganos-Störung festgestellt. Sie belegen, dass an diesen Stellen die Reaktionszone von Methan und Sulfat schon bis zum Meeresboden aufgestiegen ist. An den Austrittsstellen haben sich schwefeloxidierende Bakterien angesiedelt. Durch das auch entstehende Eisensulfid bilden sich dunkle Stellen am Meeresboden, die mit der Kamera festgehalten werden konnten.

Doch was haben Eisensulfid am Meeresboden und Erdbeben miteinander zu tun? Sehr viel sogar, meint Peter Halbach: "Während des Erdbebens 1999 waren Fischer auf dem Meer. Sie erzählten, dass das Meer scheinbar gekocht hat." Dieses "Kochen" führt er auf den Gasaustritt am Grund des Marmarameeres zurück: "Am Meeresboden wurde das Methan herausgepresst und stieg schnell in der Wassersäule nach oben. So entstand der Eindruck, dass das Meer sprudelte."

Die Berliner Geologen wollen nun untersuchen, ob sich diese Erkenntnis auch zur Vorhersage von Erdbeben nutzen lässt. Sie glauben, dass der Gasaustritt schon vor dem eigentlichen Erdbeben beginnt. Sie planen, zusammen mit französischen und türkischen Wissenschaftlern Gassensoren und Kameras am Meeresboden zu installieren. Wenn sich dann ein Erdbeben aufbaut, würde sich mit Hilfe der Kameras der Zeitpunkt des Gasaustritts feststellen lassen. Beginnt der Gasaustritt tatsächlich schon vor dem eigentlichen Erdbeben, könnte dieser Befund in der Zukunft zur Erdbebenwarnung dienen. Zwar können Geologen Erdbeben nicht verhindern, aber ihre Vorhersage kann vielen Menschen das Leben retten.

von Grit Beck

Weitere Informationen erteilen Ihnen gerne:
- Prof. Dr. Peter E. Halbach, Fachbereich Geowissenschaften der Freien Universität Berlin, Fachrichtung Geochemie, Hydrologie, Mineralogie, Malteserstr. 74-100, Haus B, 12249 Berlin, Tel.: 030 / 838-70738, E-Mail: hbrumgeo@zedat.fu-berlin.de
- Dipl.-Geog. Thomas Reichel, Tel.: 030 / 838-70186 oder 0179 / 1138633, E-Mail: thomasr@zedat.fu-berlin.de

Ilka Seer | idw

Weitere Berichte zu: Erdbeben Gasaustritt Geologe Marmarameer Meeresboden Methan Sediment

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Zeppelin, Drohnen und Forschungsschiffe untersuchen Wattenmeer und Elbe
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie