Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien im Urozean lagerten viele Tonnen Eisenerz ab

08.09.2008
Wie riesige gebänderte Gesteinsformationen entstanden sind - Veröffentlichung in "Nature"

Vor allem in Südafrika und Australien gibt es mächtige, zwei bis 3,4 Milliarden Jahre alte geologische Formationen aus Eisenoxid und Siliziumdioxid. Manche von diesen sogenannten gebänderten Eisenformationen (englisch: Banded Iron Formations, BIFs) enthalten viele Milliarden Tonnen Eisenoxid und haben eine Ausdehnung von 100.000 Quadratkilometern.

Diese Eisenerze decken nicht nur einen Großteil des Weltbedarfs an Eisen, sondern sind auch von besonderem Interesse für die Wissenschaft. Die Wissenschaftler erhoffen sich von der Erforschung dieser Gesteinsformationen Aufschluss über die Entwicklung der Atmosphäre und des Klimas sowie der Evolution von Mikroorganismen in der frühen Erdgeschichte. Wie die Ablagerungen mit den auffälligen Bänderungen entstanden sind, ist bislang unbekannt.

Doch die Geomikrobiologen vom Zentrum für Angewandte Geowissenschaften der Universität Tübingen Nicole R. Posth und Florian Hegler unter der Leitung von Prof. Andreas Kappler können jetzt der Entstehungsgeschichte ein wichtiges Puzzleteil hinzufügen. Sie haben erstmals eine plausible Erklärung gefunden, auf welche Weise Mikroorganismen an der Bildung der Eisenerze beteiligt waren und wie sie auch zur Ablagerung der immer im Wechsel mit dem Eisen auftretenden Siliziumdioxid-Schichten beigetragen haben.

Die Forschungsergebnisse werden von der Fachzeitschrift Nature Geoscience am Sonntag, 7. September, 19 Uhr, vorab online veröffentlicht (http://dx.doi.org/10.1038/ngeo306).

Das Eisen im Urozean stammte aus heißen Quellen am Ozeanboden und war als reduziertes, zweiwertiges Eisen im Wasser gelöst. Der Großteil des Eisens in den heutigen BIFs liegt jedoch als oxidiertes, dreiwertiges Eisen vor. Die Forscher wissen deshalb, dass das zweiwertige Eisen zur Ablagerung oxidiert werden musste. Im klassischen Modell zur Entstehung der BIFs wurde angenommen, dass die Oxidation durch Sauerstoff geschah, den frühe einzellige Lebewesen, die Cyanobakterien, durch ihren Stoffwechsel als Abfallprodukt gebildet hatten.

Die Forschung der letzten Jahre hat gezeigt, dass zu diesem frühen Zeitpunkt in der Erdgeschichte vermutlich nur sehr wenig oder sogar kein Sauerstoff vorhanden war. Es wurde auch bezweifelt, dass es damals überhaupt schon Cyanobakterien gab. Die Bildung der ältesten BIFs kann also nicht durch Sauerstoff geschehen sein. Denn die ältesten bekannten gebänderten Eisenerze stammen bereits aus dem Präkambrium, sie sind bis zu vier Milliarden Jahre alt - das Alter der Erde wird auf 4,5 bis 4,6 Milliarden Jahre geschätzt.

Andreas Kappler und seine Arbeitsgruppe knüpften bei ihren Forschungen an eine Theorie an, die im Jahre 1969 zum ersten Mal veröffentlicht wurde: Danach sollten die Erze durch eisenoxidierende Bakterien entstanden sein, die zum Leben zwar Licht, aber keinen Sauerstoff benötigten. Allerdings wurden solche anaeroben phototrophen eisenoxidierenden Bakterien erst 1993 in der Natur entdeckt und konnten dann im Labor gezüchtet und untersucht werden.

Mit Hilfe von Lichtenergie oxidieren sie zweiwertiges Eisen und setzen es zu dreiwertigem Eisen um - eben zu solchen rostigen Mineralen, wie sie in den BIFs enthalten sind. Die Tübinger Geomikrobiologen entdeckten nun, dass die Ausfällung von Eisen- und Silikatmaterialien in den BIFs natürlichen Temperaturschwankungen unterlag. Die Abhängigkeit von der Temperatur würde auch die bisher unerklärte alternierende Bänderung der Gesteinsformationen erklären: Die Eisenbakterien oxidieren zweiwertiges Eisen nur innerhalb eines bestimmten Temperaturbereiches. Wenn die Temperatur sinkt, werden weniger Eisenoxide gebildet.

Im Gegenzug fällt in einer chemischen Reaktion das im Wasser gelöste Siliziumdioxid in Form von festem Silikat aus. Steigt die Temperatur erneut, werden die Eisenbakterien wieder aktiv und lagern die nächste Schicht Eisenminerale ab - und so weiter. Dadurch lässt sich die typische Wechsellagerung von Eisenoxid- und Silikatmineralien erklären.

Durch ihre Arbeiten können die Tübinger Wissenschaftler nicht nur erstmals erklären, wie Mikroorganismen an der Bildung der Bänderung der BIFs beteiligt sind. Die Forschungsergebnisse geben auch weitere Hinweise darauf, dass zu dieser frühen Zeit auf der Erde sauerstoffbildende Bakterien wie die Cyanobakterien nicht die wichtigste Rolle gespielt haben oder vielleicht noch gar nicht vorhanden waren. Damit hätte es auch noch keinen beziehungsweise nur wenig Sauerstoff in der Atmosphäre gegeben. Stattdessen dominierten vor einigen Milliarden Jahren andere Mikroben wie die von den Tübingern untersuchten Eisenbakterien die Ozeane.

Nähere Informationen:

Prof. Dr. Andreas Kappler
Arbeitsgruppe Geomikrobiologie
Zentrum für Angewandte Geowissenschaften
Eberhard Karls Universität Tübingen
Sigwartstraße 10, 72076 Tübingen
Tel. 0 70 71/2 97 49 92, Fax: 0 70 71/50 59
E-Mail: andreas.kappler@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/
http://www.ifg.uni-tuebingen.de/departments/zag/geomicrobiology/index.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Seltener Weizenfund in bronzezeitlicher Lunch-Box aus dem Schweizer Hochgebirge
26.07.2017 | Max-Planck-Institut für Menschheitsgeschichte / Max Planck Institute for the Science of Human History

nachricht Grossmäuliger Fisch war nach Massenaussterben Spitzenräuber
26.07.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops