Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien entschärfen giftiges Kadmium im Boden

10.12.2013
Geomikrobiologen der Universität Tübingen untersuchen das Potenzial der unsichtbaren Helfer bei der Sanierung

Kadmium ist eines der weitverbreitetsten Schwermetalle auf Agrarflächen in der ganzen Welt und findet sich häufig in zu hohen Konzentrationen in Gemüse und Tabak. Die dauerhafte Einnahme von Kadmium kann bei Menschen zu Knochendeformationen und Krebs führen. Im Boden liegt Kadmium an Minerale gebunden vor.

In dieser Form ist es nicht mobil und kaum schädlich. Seine Mobilität – und Gefährlichkeit – steigt jedoch durch den Einfluss von Bakterien, die Minerale auflösen und umsetzen können. Wie die Bakterien umgekehrt aber auch zur Reinigung kadmiumverseuchter Böden genutzt werden können, hat die Geomikrobiologin Eva Marie Mühe unter der Leitung von Professor Andreas Kappler und Dr. Martin Obst vom Zentrum für Angewandte Geowissenschaften der Universität Tübingen untersucht. Die Ergebnisse wurden in zwei Studien in der Fachzeitschrift "Environmental Science and Technology" publiziert.

Kadmium kommt in natürlichen Phosphatlagerstätten vor und gelangt so in phosphathaltige Düngemittel. Während die Gesetze in Deutschland vorschreiben, dass Phosphatdünger nicht mehr als 50 Milligramm Kadmium pro Kilogramm Phosphorpentoxid enthalten darf, fehlen solche Richtlinien auf EU-Ebene und in vielen anderen Ländern. Da die Ressource Phosphat sich weltweit dem Ende zuneigt, wird der Abbau auf qualitativ schlechtere Abbaustätten verlegt. Die Entfernung des Kadmiums aus dem abgebauten Phosphat ist kostspielig und unterbleibt in vielen Fällen. Das hat zur Folge, dass immer häufiger qualitativ schlechte Phosphatdünger auf Agrarflächen ausgebracht werden. Durch den steigenden Einsatz von Düngemitteln steigt auch insgesamt der Gehalt an Schwermetallen in Böden stetig an.

Die Verfügbarkeit des mineralgebundenen Kadmiums wird im Boden verringert, indem es in neu gebildete Eisenminerale eingebaut wird, zum Beispiel in das Mineral Magnetit. Dieses wird aufgrund seiner Stabilität, Reaktivität und Fähigkeit, Metalle zu binden, immer öfter zur Sanierung kontaminierter Böden und Gewässer eingesetzt. Das Tübinger Forscherteam konnte in Laborexperimenten mit kontaminierten Böden zeigen, dass es Bakterien sind, die kadmiumhaltige, rostige Eisenoxid-Minerale biologisch umsetzen und dadurch auflösen. Für genauere Untersuchungen haben sie ein geeignetes Bakterium aus einem kadmiumhaltigen Boden isoliert und als Laborkultur herangezüchtet. Dieser Stamm kommt selbst mit sehr hohen Kadmiumkonzentrationen zurecht.

„Die Studien zeigten, dass dieses Bakterium während der Auflösung des Eisenminerals das gebundene Kadmium zunächst in Lösung bringt, bevor dieses sich fast vollständig an neu gebildete Minerale, insbesondere den stabilen Magnetit, bindet“, erklärt Andreas Kappler. Die Forscher halten es daher für möglich, dass dieses kurzzeitig mobile Kadmium aus kontaminierten Böden durch Pflanzen, die Metalle in ihren Organen ansammeln, aufgenommen werden könnte. „Wenn sich das als umsetzbar erweist, ließe sich das Metall verhältnismäßig einfach durch das Abernten der kadmiumspeichernden Pflanzen entsorgen“, sagt der Geomikrobiologe.

Diese Arbeiten wurden finanziell von der Deutschen Bundesstiftung Umwelt (DBU) in Form eines Promotionsstipendiums für Eva Marie Mühe unterstützt.

Publikationen:
Muehe E M, Obst M, Hitchcock A P, Tylsizczak T, Behrens S, Schröder C, Byrne J M, Michel M, Krämer U, Kappler A. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species. Environmental Sci-ence and Technology, in press. DOI : 10.1021/es403365w

Muehe E M, Adaktylou I J, Obst M, Zeitvogel F, Behrens S, Planer-Friedrich B, Kramer U, Kappler A. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH neutral soil. Environmental Science and Technology (2013), 47,13430-13439. DOI: 10.1021/es403438n

Kontakt:
Prof. Dr. Andreas Kappler
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Zentrum für Angewandte Geowissenschaften/ Arbeitsgruppe Geomikrobiologie
Tel. +49 7071 29-74992
andreas.kappler[at]uni-tuebingen.de
Weitere Informationen:
http://www.geo.uni-tuebingen.de/arbeitsgruppen/angewandte-geowissenschaften/forschungsbereich/geomikrobiologie/workgroup.html

- die Arbeitsgruppe Geomikrobiologie

Dr. Karl Guido Rijkhoek | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Heidelberger Forscher untersuchen einzigartige Unterwasser-Tropfsteine
24.11.2017 | Universität Heidelberg

nachricht Umrüstung auf LED-Beleuchtung spart Energie und Geld, führt aber zu steigender Lichtverschmutzung
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences