Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufstieg oder nicht? - Wie heißes Gestein im Erdmantel gebremst wird

24.04.2015

Gigantische Volumen heißen Gesteinsmaterials, die aus dem Erdmantel bis zur Lithosphäre aufsteigen, haben das Gesicht unseres Planeten geprägt. Sie führen, bei ausreichender Größe, zum Auseinanderbrechen von Kontinenten und sind auch verantwortlich für das Massen-Aussterben in bestimmten Phasen der Erdgeschichte.

Bisher nahm man an, dass diese – Mantelplumes genannten – riesigen Gesteinsströme aufgrund ihrer hohen Temperatur direkt aus dem tiefen Erdmantel aufsteigen können. Ein Team von Geodynamik-Modellierern des Deutschen GeoForschungsZentrums GFZ berichtet nun in der aktuellen Ausgabe von Nature Communications über mögliche Hindernisse, die den Aufstieg solcher Mantelplumes verhindern können und unter welchen Bedingungen das Gestein doch die Lithosphäre erreichen kann.


Eine Abb. der durch die Erdkruste an die Oberfläche gelangten Flutbasalte in Sibirien

Die Geoforscher konnten dabei zugleich Widersprüche in den bisherigen Modellvorstellungen auflösen.
Die größten auf der Erde stattfindenden magmatischen Ereignisse beruhen auf dem massenhaften Schmelzen von aus dem tiefen Erdmantel aufsteigendem heißem Gestein.

Spuren solcher Ereignisse der Erdgeschichte finden sich an der Erdoberfläche im Gestein von so genannten magmatischen Großprovinzen (Large Igneous Provinces) findet. Die bisherige Vorstellung war, dass das heiße Gestein im tiefen Erdmantel aufgrund seiner hohen Temperatur einen starken Auftrieb besitzt, daher aufsteigt und die darüber liegende Erdoberfläche um mehr als einen Kilometer anhebt.

Außerdem wurde bisher angenommen, dass diese Mantelplumes eine pilzartige Form besitzen: Zuerst steigt Material in einer breiten, kugelartigen Struktur auf, in seiner Schleppe folgt ein wesentlich dünnerer Auftiegskanal, der einen entschieden schmaleren Radius von etwa hundert Kilometern besitzt. Das Problem: diese Modellvorstellung stimmt in vielen Fällen nicht mit geologischen und geophysikalischen Beobachtungen überein, die breitere Aufströmungszonen und eine geringere topografische Hebung vermuten lassen.

Die Lösung liegt in Beobachtungen der Plattentektonik: An vielen Stellen auf der Erde sinkt der Ozeanboden in den Erdmantel, wie etwa in den Subduktionszonen rund um den Pazifik. Dieses Gesteinsmaterial taucht offenbar während Millionen von Jahren bis in große Tiefen in den Erdmantel ein.

Dieser frühere Ozeanboden besitzt eine andere geochemische Zusammensetzung als der umgebende Erdmantel und hat eine höhere Dichte. Wenn dieses Gestein mit dem heißen Gestein des Mantelplumes vermischt wird, was geochemische Analysen von Gesteinen aus magmatischen Großprovinzen vermuten lassen, verringert sich so der Auftrieb des Plumes. Damit stellt sich aber die Frage, ob das heiße Material noch leicht genug ist, um auch durch aus dem unteren Erdmantel bis zur Oberfläche aufzusteigen.

GFZ-Wissenschaftlerin Juliane Dannberg: „Unsere Computermodelle zeigen, dass einerseits die Temperaturunterschied zum Umgebungsgestein hoch genug sein muss, damit der Auftrieb am Entstehungsort des Plumes im unteren Mantel ausreicht, um den Aufstieg beginnen zu lassen. Andererseits muss das Volumen des aufsteigenden Gesteins ausreichend groß sein, um eine Zone im oberen Erdmantel durchqueren zu können, wo Drücke und Temperaturen im Gestein zu Bildung von Mineralen führen, die wesentlich schwerer als das Umgebungsgestein sind.“

Unter diesen Bedingungen entstehen zum einen Mantelplumes mit so geringem Auftrieb, dass sie nicht zu massivem Vulkanismus und Naturkatastrophen führen, sondern sogar im Mantel stecken bleiben. Andererseits sind diejenigen Mantelplumes, die den gesamten Mantel durchqueren konnten, viel weiträumiger, verbleiben über Hunderte von Millionen Jahren im Erdmantel und heben die Erdoberfläche um nur um wenige hundert Meter an, wie es auch in der Natur beobachtet wird.

Dannberg, J. and Sobolev, S.V., “Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept”, Nature Communications, 24.04.2015, doi: 10.1038/ncomms7960

Franz Ossing
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Deutsches GeoForschungsZentrum
- Head, Public Relations -
Telegrafenberg
14473 Potsdam / Germany
E-Mail: ossing@gfz-potsdam.de
Tel. +49 (0)331-288 1040
Fax +49 (0)331-288 1044
www.gfz-potsdam.de

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Cybersicherheit für die Bahn von morgen

24.03.2017 | Informationstechnologie

Schnell und einfach: Edge Datacenter fürs Internet of Things

24.03.2017 | CeBIT 2017

Designer-Proteine falten DNA

24.03.2017 | Biowissenschaften Chemie