Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomuhren zur Überwachung von Vulkanen

30.06.2015

Hochpräzise Atomuhren können dazu benutzt werden, um Vulkane zu überwachen und genaue Voraussagen über zukünftige Vulkanausbrüche zu treffen. Ausserdem könnte ein Bodennetzwerk aus Atomuhren die Reaktion der Erdkruste auf die festen Erdgezeiten überwachen. Das fand ein internationales Forscherteam unter der Leitung der Universität Zürich heraus.

Optische Atomuhren können Zeit mit einer unglaublichen Präzision messen. Die neuesten dieser Uhren sind so genau, dass sie bei einer Laufzeit von 10 Milliarden Jahren weniger als eine Sekunde an Genauigkeit verlieren.


Dieses Video zeigt, wie Atomuhren Vulkane zukünftig überwachen könnten. (Quelle: UZH)

Allerdings sind Uhren dieser Genauigkeit bis jetzt nur im Labor verfügbar. Wissenschaft und Industrie nutzen das Potenzial dieser neuartigen Zeitmessung noch nicht. Ein internationales Team unter der Mitwirkung von Dr. Ruxandra Bondarescu, Andreas Schärer und Prof. Philippe Jetzer des Physik Instituts der Universität Zürich hat nun mögliche Anwendungsbereiche für Atomuhren erforscht.

Ihre Analysen zeigen, dass Atomuhren zusammen mit Erkenntnissen aus der Relativitätstheorie benutzt werden können, Vulkane zu überwachen. Die allgemeine Relativitätstheorie besagt, dass Uhren, die in unterschiedlichen Abständen zu einem schweren Körper wie unserer Erde aufgestellt sind, unterschiedlich schnell ticken.

Je näher sie sind, desto langsamer ticken sie. Fliesst Lava in eine unterirdische Kammer unterhalb eines Vulkans, verlangsamt sich die Zeit einer Uhr, die am Vulkan positioniert ist, im Vergleich zu einer weiter entfernten Uhr. Gegenwärtig werden Vulkane mittels GPS-Empfänger überwacht.

Die daraus resultierenden Daten müssen oft über Jahre hinweg integriert werden, bevor eine Schätzung über das Volumen der neuen Magma vorgenommen werden kann. Lokale Atomuhren könnten die gleiche Information bereits innerhalb einiger Stunden bereitstellen. Damit könnten die Vorgänge im Inneren der Vulkane besser überwacht und genauere Voraussagen über zukünftige Vulkanausbrüche getroffen werden.

Überwachung der Erdgezeiten durch ein globales Netzwerk von Atomuhren

Ausserdem können mit Atomuhren die Erdgezeiten überwacht und bestimmt werden. Gezeiten treten auf, weil sich die Erde im Gravitationsfeld der Sonne und des Mondes bewegt. Sie reagiert auf dieses äussere Feld durch Verformung, was wiederum die Gezeiten verursacht und dazu führt, dass sich der Boden auf den Kontinenten regelmässig anhebt und absenkt.

Eine solche Bodenanhebung kann bis zu 50 Zentimeter betragen. Mithilfe eines globalen Netzwerks von Atomuhren, die über Glasfaserkabel miteinander verbunden sind, könnten Erdgezeiten permanent gemessen und theoretische Modelle überprüft werden. Auch allfällige regionale Unterschiede im Verhalten der Erdkruste auf die Erdgezeiten könnten untersucht werden.

Das Forscherteam hofft, dass Atomuhren schon in wenigen Jahren für diese Anwendungsbereiche eingesetzt werden. Voraussetzung dafür sei ein genügend grosses Interesse sowie Investitionen seitens der Industrie. «Wir brauchen dieses zusätzliche Werkzeug, um Magma-Bewegung unter Vulkanen, deren Explosionen bereits überfällig sind, wie beispielsweise dem Yellowstone, zu überwachen. Eine unerwartete Explosion würde das Leben auf der Erde wie wir es kennen schlagartig ver-ändern», erklärt Bondarescu.

Literatur:

Ruxandra Bondarescu, Andreas Schärer, Andrew P. Lundgren, György Hetényi, Nicolas Houlié, Philippe Jetzer, and Mihai Bondarescu. Atomic Clocks as a Tool to Monitor Vertical Surface Motion. Express letter in the Geophysical Journal International. arXiv:1506.02457.

Kontakt:
Dr. Ruxandra Bondarescu
Physik Institut
Universität Zürich
Tel. +41 44 635 58 04
E-Mail: ruxandra@physik.uzh.ch

Prof. Philippe Jetzer
Physik Institut
Universität Zürich
Tel +41 44 635 58 19
E-Mail: jetzer@physik.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Beat Müller | Universität Zürich

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie