Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Angesäuerte Magma als treibende Kraft - Wie diamanthaltige Kimberlite an die Oberfläche kommen

19.01.2012
Kimberlite sind magmatische Gesteine, die tief aus dem Erdinneren stammen und durch vulkanische Eruptionen an die Erdoberfläche gelangten.

Auf ihrem explosiven Weg nach oben rissen sie zahlreiche weitere Gesteine und auch Diamanten mit - der größte Teil der Welt-Diamantproduktion stammt aus Kimberlitlagerstätten. Wie Kimberlite genügend Auftrieb für ihren langen Aufstieg durch die Erdkruste bekommen, war bisher noch weitgehend ungeklärt.

Ein internationales Team um Professor Donald Dingwell, Direktor des Departments für Geo- und Umweltwissenschaften der LMU, konnte nun zeigen, dass gerade die mitgerissenen Fremdgesteine den nötigen Schwung liefern: Diese schmelzen in der ursprünglich sehr basischen Magma und machen sie saurer. Dadurch kommt es zur Freisetzung von Kohlendioxid - das resultierende ständige "Schäumen" vermindert die Dichte der Magma und erleichtert den Aufstieg. "Unsere Ergebnisse können bei der Suche nach neuen Diamantminen und bei der Beurteilung existierender Lagerstätten helfen, da wir nun besser verstehen, unter welchen Bedingungen Kimberlit entsteht", sagt Dingwell. (Nature 18. Januar 2012)

Die meisten Kimberlite entstanden vor 70 bis 150 Millionen Jahren, es gibt aber auch Kimberlit, der bereits 1,2 Milliarden Jahre alt ist. Allgemein kommen sie nur in uralten Kontinentalkernen - sogenannten Kratonen - vor, die über Äonen unverändert blieben.

Die Quelle der kimberlitischen Magma liegt etwa 150 km unter der Erdoberfläche und damit viel tiefer als die aller anderen vulkanischen Gesteine. In dieser Tiefe herrschen auch die notwendigen hohen Temperaturen und Drücke, damit Kohlenstoff zu Diamant kristallisieren kann. Wird kimberlitische Magma durch sogenannte Pipes - tiefe Schlote vulkanischen Ursprungs - an die Oberfläche geschleudert, kann sie Diamanten wie mit einem Lift ans Licht befördern - deshalb liegen die meisten Diamantenminen in Kimberlitschloten. Aber Kimberlite reißen auch zahlreiche andere Gesteine auf ihrem langen Weg nach oben mit.

Trotz dieses zusätzlichen Gepäcks steigt kimberlitische Magma schnell auf und wird in explosiven Eruptionen freigesetzt. „Man nimmt an, dass Gase wie Kohlendioxid und Wasser essenziell sind, um die für den rasanten Aufstieg erforderliche Antriebskraft zu bekommen", sagt Dingwell, „wie es zu deren Freisetzung aus der Magma kommt, war allerdings unklar". Mithilfe von Hochtemperaturexperimenten konnten die Wissenschaftler nun nachweisen, dass die mitgerissenen Fremdgesteine eine wichtige Rolle spielen: Die ursprüngliche Magma tief im Erdinneren besteht vor allem aus carbonathaltigen Komponenten, die zudem viel Wasser enthalten können. Passiert die Magma auf ihrem Weg nach oben silikatreichere Gesteine, werden diese sehr effektiv gelöst, wodurch es zu einer Übersättigung der zunehmend silikathaltigen Schmelze mit Kohlendioxid kommt - als Folge wird Kohlendioxid freigesetzt. „Das Resultat ist ein kontinuierliches „Schäumen" der Magma, das deren Fließeigenschaften verbessert und ihr den nötigen Auftrieb verleiht, um sehr vehement an die Erdoberfläche zu drängen", erklärt Dingwell. Desto schneller die Magma weiter nach oben steigt, desto mehr Fremdgestein reißt sie mit, und desto mehr Silikate werden gelöst - letztendlich treiben Kohlendioxid und Wasserdampf die heiße Gesteinsschmelze mit großer Wucht voran wie eine Rakete. Die Ergebnisse der Wissenschaftler erklären auch, warum das Vorkommen von Kimberliten an die alten Festlandskerne gebunden ist: Hier sind zum einen die Gesteinsschichten ausreichend mit Silikaten angereichert. Zum anderen sind die kratonischen Kontinentalblöcke sehr dick - dadurch ist der Weg ans Licht sehr lang und bietet der Magma ausreichend Gelegenheit, mit dem silikatreichen Gestein in Kontakt zu kommen.

Die Studie wurde gefördert im Rahmen eines Advanced Grants der Europäischen Forschungskommission (ERC) für das Projekt EVOKES und durch eine LMUexcellent-Forschungsprofessur für Donald Dingwell. (göd)

Publikation:
„Kimberlite ascent by assimilation-fuelled buoyancy”;
J.K. Russell, L.A. Porritt, Y. Lavallée, D.B. Dingwell;
Nature Advanced Online Publication 18. Januar 2012
doi: 10.1038/nature10740

Kontakt:
Prof. Dr. Donald B. Dingwell
Department für Geo- und Umweltwissenschaften
Tel.: 089 / 2180 – 4136
Fax: 089 / 2180 – 4176
E-Mail: dingwell@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor
14.12.2017 | Karl-Franzens-Universität Graz

nachricht Rest-Spannung trotz Megabeben
13.12.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik