Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Angesäuerte Magma als treibende Kraft - Wie diamanthaltige Kimberlite an die Oberfläche kommen

19.01.2012
Kimberlite sind magmatische Gesteine, die tief aus dem Erdinneren stammen und durch vulkanische Eruptionen an die Erdoberfläche gelangten.

Auf ihrem explosiven Weg nach oben rissen sie zahlreiche weitere Gesteine und auch Diamanten mit - der größte Teil der Welt-Diamantproduktion stammt aus Kimberlitlagerstätten. Wie Kimberlite genügend Auftrieb für ihren langen Aufstieg durch die Erdkruste bekommen, war bisher noch weitgehend ungeklärt.

Ein internationales Team um Professor Donald Dingwell, Direktor des Departments für Geo- und Umweltwissenschaften der LMU, konnte nun zeigen, dass gerade die mitgerissenen Fremdgesteine den nötigen Schwung liefern: Diese schmelzen in der ursprünglich sehr basischen Magma und machen sie saurer. Dadurch kommt es zur Freisetzung von Kohlendioxid - das resultierende ständige "Schäumen" vermindert die Dichte der Magma und erleichtert den Aufstieg. "Unsere Ergebnisse können bei der Suche nach neuen Diamantminen und bei der Beurteilung existierender Lagerstätten helfen, da wir nun besser verstehen, unter welchen Bedingungen Kimberlit entsteht", sagt Dingwell. (Nature 18. Januar 2012)

Die meisten Kimberlite entstanden vor 70 bis 150 Millionen Jahren, es gibt aber auch Kimberlit, der bereits 1,2 Milliarden Jahre alt ist. Allgemein kommen sie nur in uralten Kontinentalkernen - sogenannten Kratonen - vor, die über Äonen unverändert blieben.

Die Quelle der kimberlitischen Magma liegt etwa 150 km unter der Erdoberfläche und damit viel tiefer als die aller anderen vulkanischen Gesteine. In dieser Tiefe herrschen auch die notwendigen hohen Temperaturen und Drücke, damit Kohlenstoff zu Diamant kristallisieren kann. Wird kimberlitische Magma durch sogenannte Pipes - tiefe Schlote vulkanischen Ursprungs - an die Oberfläche geschleudert, kann sie Diamanten wie mit einem Lift ans Licht befördern - deshalb liegen die meisten Diamantenminen in Kimberlitschloten. Aber Kimberlite reißen auch zahlreiche andere Gesteine auf ihrem langen Weg nach oben mit.

Trotz dieses zusätzlichen Gepäcks steigt kimberlitische Magma schnell auf und wird in explosiven Eruptionen freigesetzt. „Man nimmt an, dass Gase wie Kohlendioxid und Wasser essenziell sind, um die für den rasanten Aufstieg erforderliche Antriebskraft zu bekommen", sagt Dingwell, „wie es zu deren Freisetzung aus der Magma kommt, war allerdings unklar". Mithilfe von Hochtemperaturexperimenten konnten die Wissenschaftler nun nachweisen, dass die mitgerissenen Fremdgesteine eine wichtige Rolle spielen: Die ursprüngliche Magma tief im Erdinneren besteht vor allem aus carbonathaltigen Komponenten, die zudem viel Wasser enthalten können. Passiert die Magma auf ihrem Weg nach oben silikatreichere Gesteine, werden diese sehr effektiv gelöst, wodurch es zu einer Übersättigung der zunehmend silikathaltigen Schmelze mit Kohlendioxid kommt - als Folge wird Kohlendioxid freigesetzt. „Das Resultat ist ein kontinuierliches „Schäumen" der Magma, das deren Fließeigenschaften verbessert und ihr den nötigen Auftrieb verleiht, um sehr vehement an die Erdoberfläche zu drängen", erklärt Dingwell. Desto schneller die Magma weiter nach oben steigt, desto mehr Fremdgestein reißt sie mit, und desto mehr Silikate werden gelöst - letztendlich treiben Kohlendioxid und Wasserdampf die heiße Gesteinsschmelze mit großer Wucht voran wie eine Rakete. Die Ergebnisse der Wissenschaftler erklären auch, warum das Vorkommen von Kimberliten an die alten Festlandskerne gebunden ist: Hier sind zum einen die Gesteinsschichten ausreichend mit Silikaten angereichert. Zum anderen sind die kratonischen Kontinentalblöcke sehr dick - dadurch ist der Weg ans Licht sehr lang und bietet der Magma ausreichend Gelegenheit, mit dem silikatreichen Gestein in Kontakt zu kommen.

Die Studie wurde gefördert im Rahmen eines Advanced Grants der Europäischen Forschungskommission (ERC) für das Projekt EVOKES und durch eine LMUexcellent-Forschungsprofessur für Donald Dingwell. (göd)

Publikation:
„Kimberlite ascent by assimilation-fuelled buoyancy”;
J.K. Russell, L.A. Porritt, Y. Lavallée, D.B. Dingwell;
Nature Advanced Online Publication 18. Januar 2012
doi: 10.1038/nature10740

Kontakt:
Prof. Dr. Donald B. Dingwell
Department für Geo- und Umweltwissenschaften
Tel.: 089 / 2180 – 4136
Fax: 089 / 2180 – 4176
E-Mail: dingwell@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Globale Klimaextreme nach Vulkanausbrüchen
22.08.2017 | Justus-Liebig-Universität Gießen

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

6. Leichtbau-Tagung: Großserienfähiger Leichtbau im Automobil

23.08.2017 | Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Turbulente Bewegungen in der Atmosphäre eines fernen Sterns

23.08.2017 | Physik Astronomie

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungsnachrichten

Mit Algen Arthritis behandeln

23.08.2017 | Biowissenschaften Chemie