Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Amphibien und Saurier waren die neuen Grossraubtiere nach dem Massensterben

20.03.2014

Sofort nach dem grössten Massensterben aller Zeiten gab es in den Ozeanen der Untertrias wieder funktionierende und vollständige Nahrungsnetze. Entgegen der bisherigen Annahme fehlten auch die Grossraubtiere nicht. Das letzte Glied der Nahrungskette bildeten grosse Raubfische und Amphibien, später zudem Saurier. Dies zeigen neue Untersuchungen von Paläontologen der Universität Zürich und aus Utah, USA.

Vor 252 Millionen Jahren fand am Ende des Permzeitalters das grösste Massensterben statt. Es löschte beinahe 90 Prozent allen Lebens im Wasser aus. Bisher ging die Forschung davon aus, dass sich die Ökosysteme von dieser Katastrophe über den langen Zeitraum von acht bis neun Millionen Jahren erholten und Grossraubtiere zuoberst an der Nahrungskette erst als Letzte wieder auf den Plan traten.


Fossil von Saurichthys, einem Topräuber unter den Trias-Fischen. Bild: UZH


Fossil und Lebendrekonstruktion von Askeptosaurus, eines grossen Meeresreptils der Trias-Zeit. Solche Thalattosaurier bzw. Meeres- oder Ozanechsen konnten über vier Meter lang werden. Bild: UZH

Ein schweizerisch-amerikanisches Paläontologen-Team unter der Leitung von Torsten Scheyer und Carlo Romano von der Universität Zürich weist in ihrer neuen Studie nach, dass sich die Nahrungsnetze in der frühen Trias nicht stufenweise regenerierten. Grossraubtiere wie zum Beispiel krokodilartige Amphibien und später die Vorläufer der bekannten Plesiosaurier und Ichthyosaurier gingen in den Ozeanen bereits kurz nach Ende des Massensterbens auf Beutefang.

Grossraubtiere von Anfang wieder dabei

Spitzenprädatoren – Grossraubtiere zuoberst an der Nahrungskette – sind für die Gesundheit und Stabilität eines Ökosystems äusserst wichtig: Sie merzen kranke und schwache Tiere aus und üben einen konstanten Selektionsdruck auf die Beutetier-Arten aus. Scheyer und Kollegen wollten deshalb wissen, ob nach dem grossen Massensterben die Spitzenprädatoren in den Ozeanen tatsächlich fehlten und wie die Ökosysteme funktionierten.

Die Forscher untersuchten die globale Verteilung von räuberischen Meereswirbeltieren sowie deren Körpergrössen in der frühen und mittleren Trias und kamen zu überraschenden Ergebnissen. «Die marinen Spitzenprädatoren erholten sich nach dem grossen Massensterben und zwar in einem vergleichsweise sehr kurzen Zeitraum», sagt Torsten Scheyer. Die Forscher können zudem ein zweites Postulat widerlegen:

Früher nahm man an, dass marine Raubtiere von der unteren zur mittleren Trias kontinuierlich grösser wurden und so letztlich die Spitzenprädatoren entstanden. «Wir zeigen jetzt, dass bereits in der frühen Trias Grossraubtiere in den Meeren jagten», erläutert Carlo Romano. «Die Gesamtlänge der Nahrungsketten wurde durch das Massensterben am Ende des Permzeitalters nicht verkürzt, und es zeigte sich auch kein stufenweiser Wiederaufbau der klassischen Nahrungspyramide von der Basis bis zur Spitze», ergänzt Hugo Bucher.

Um besser zu verstehen, wie Nahrungsnetze funktionierten, müssten nicht nur die Gestalt der Nahrungsnetze, sondern auch die Dynamik, das heisst die Evolutionsraten, der teilnehmenden Arten berücksichtigt werden.

Neue Akteure in alten Rollen

So führte das grosse Massensterben am Ende des Perms zu einer völlig neuen Zusammensetzung der Spitzenprädatoren: Dominierten im Perm grosse Raubfische, mussten sich diese nach dem Massensterben die Rolle mit räuberischen krokodilähnlichen Amphibien teilen. Auch ein weiteres Aussterbeereignis rund zwei Millionen Jahre später, die sogenannte End-Smithian-Krise, führte zu Veränderungen in der Gruppe der Spitzenprädatoren: Ab diesem Zeitpunkt standen Fische und erstmals Reptilien wie beispielsweise Corosaurus und später Askeptosaurus an der Spitze der Nahrungsketten.

«Die Rolle der Grossräuber bleibt in den Ökosystemen stets gleich, einzig die Akteure ändern im Lauf der Zeit», fasst Torsten Scheyer die neuen Resultate zusammen. Die Forscher sind überzeugt, dass das Verständnis über die Vorgänge in der Vergangenheit dazu beitragen wird, die Auswirkungen der heutigen Klimaveränderung auf die Ökosysteme besser zu verstehen.

Literatur:
Torsten M. Scheyer, Carlo Romano, Jim Jenks, Hugo Bucher. Early Triassic Marine Biotic Recovery: The Predators’ Perspective. PLOS ONE, March 19, 2014. DOI: 10.1371/journal.pone.0088987


Kontakt:
Dr. Torsten Scheyer
Paläontologisches Institut und Museum
Universität Zürich
Tel. + 41 634 23 22
E-Mail: tscheyer@pim.uzh.ch

Dr. Carlo Romano
Paläontologisches Institut und Museum
Universität Zürich
Tel. + 41 634 23 47
E-Mail carlo.romano@pim.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie