Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Altbekannter Oxidationsmechanismus auch in der Atmosphäre aktiv – und das mit weitreichenden Folgen

10.12.2014

Forscher entschlüsseln Mechanismus der schnellen Bildung von extrem schwer flüchtigen organischen Verbindungen

Dass Kohlenwasserstoffe durch atmosphärischen Sauerstoff oxidiert werden können ist bereits seit 1875 bekannt. Bisher waren diese sogenannten “Autoxidationsprozesse“ jedoch nur in der kondensierten Phase erforscht.


Feldmessungen an der TROPOS-Station in Melpitz bei Leipzig halfen mit, die Zwischenprodukte auf dem Wege zur Bildung der ELVOCs zu identifizieren. In Melpitz zeigten sich deutlich der Einfluss der Vegetation und die Unterschiede zwischen Tag und Nacht.

Foto: Tilo Arnhold/ TROPOS


Laboraufbau mit CI-APi-TOF (chemical ionisation - atmospheric pressure interface –

time-of-flight) Massenspektrometern zum Nachweis hochoxidierten RO2-Radikale und nichtradikalischer Endprodukte

Foto: Dr. Torsten Berndt/ TROPOS

Jetzt ist einem internationalen Wissenschaftlerteam unter Beteiligung des Leibniz-Instituts für Troposphärenforschung (TROPOS) erstmals der Nachweis derartiger Prozesse in der Atmosphäre gelungen. In Laborexperimenten konnte mit Hilfe von neuesten analytischen Techniken der Mechanismus weitestgehend entschlüsselt werden, der dafür sorgt, dass Kohlenwasserstoffe, die aus der Vegetation in die Luft gelangen, auf einer kurzen Zeitskala von Sekunden in organische Produkte mit bis zu 12 Sauerstoff-Atomen umgewandelt werden können.

Diese hochoxidierten Produkte stellen extrem schwerflüchtige Verbindungen dar. Da diese das Partikelwachstum entscheidend vorantreiben können, werden so auch die Wolkenbildung und das Klimasystem beeinflusst, schreiben die Wissenschaftler aus Deutschland, Finnland und den USA im Fachjournal Angewandte Chemie. Die neuen Erkenntnisse könnten helfen, die Auswirkungen von natürlichen Emissionen der Vegetation auf das Klima besser zu verstehen.

Wälder geben große Mengen an flüchtigen organischen Verbindungen (VOCs) ab. Dazu gehören beispielsweise Alpha-Pinen und Limonen, der typische Duft von Nadelwäldern. Deren Reaktionsprodukte bilden das sogenannte sekundäre organische Aerosol. Dabei werden Gase zu Partikelbestandteilen umgewandelt.

Diese atmosphärischen Partikel können die Sonnenstrahlung reflektieren oder als Keime für Wolkentropfen fungieren. Prozesse, die großen Einfluss auf das Klima haben und daher von großem wissenschaftlichen Interesse sind. Allerdings sind die dazugehörigen Modellrechnungen bisher sehr ungenau, da es noch breite Wissenslücken dabei gibt, welche Rolle die von den Pflanzen abgegebenen Verbindungen für den Prozess der Partikelbildung und -wachstum genau spielen. Solange diese Prozesse aber nur unzureichend verstanden sind, fällt es schwer, genaue Prognosen zu machen. Eine Unsicherheit, die sich auch auf sämtliche Klimamodelle auswirkt.

Große Unsicherheiten bestehen vor allem beim Wachstum von neugebildeten Partikeln hin zu Wolkenkeimen, an denen Wasser kondensiert und dadurch die Wolkenbildung beginnt. Das Partikelwachstum in Größen von etwa zwei bis einhundert Nanometern würde schwerflüchtige organische Dämpfe erfordern, wurde lange spekuliert. Diese extrem schwer flüchtigen organischen Verbindungen - auf Englisch „extremely low-volatility organic compounds (ELVOCs)“ genannt – wurden erst vor kurzem durch Fortschritte in der Messtechnik nachweisbar. Anfang 2014 wurde dieser Nachweis im Fachmagazin NATURE veröffentlicht.

Über mögliche Bildungswege wurde anschließend in der Fachwelt spekuliert. Mit der jetzt veröffentlichten Studie von Wissenschaftlern des TROPOS und der Universität Helsinki in Zusammenarbeit mit amerikanischen Kollegen lösen die Atmosphärenchemiker einen weiteren Teil des Rätsels. Durch Laborversuche im Strömungsrohr des TROPOS sowie Feldmessungen in Melpitz bei Leipzig und im südfinnischen Hyytiäla konnten die Zwischenprodukte auf dem Wege zur Bildung der ELVOCs identifiziert werden.

„Unsere Untersuchungen haben gezeigt, dass die häufigsten Monoterpene wie Limonen und Alpha-Pinen innerhalb von Sekunden hochoxidierte RO2-Radikale mit bis zu 12 Sauerstoff-Atomen und nachfolgend die dazugehörigen nichtradikalischen Endprodukte bilden. Der Gesamtprozess in der Atmosphäre verläuft damit ähnlich zu dem bereits lange bekannten Autooxidationsprozess in der kondensierten Phase“, erklärt Dr. Torsten Berndt vom TROPOS. Unter Autooxidation wird in der Chemie ein Prozess verstanden, bei dem Stoffe mit Luftsauerstoff bei Umgebungstemperatur langsam umgewandelt werden. Diese Selbstoxidation sorgt zum Beispiel auch dafür, dass Kunststoffe spröde werden oder Lebensmittel verderben.

„Die Feldmessungen über den Wiesen von Melpitz und im Nadelwald von Hyytiäla in Finnland bestätigen die Laborergebnisse und weisen die Bedeutung der Autooxidation für die Oxidation der Kohlenwasserstoffe in der Atmosphäre nach. Die gebildeten hochoxidierten RO2-Radikale und ihre nichtradikalischen Endprodukte besitzen wahrscheinlich eine sehr geringe Flüchtigkeit. Deshalb sind sie für das Wachstum atmosphärischer Aerosole entscheidend und beeinflussen so die Wechselwirkungen zwischen Aerosol, Wolken und Klima“, unterstreicht Tujia Jokinen von der Universität Helsinki. Die neuen Erkenntnisse werden also helfen, den Beitrag der Vegetation und damit von verschiedenen Landnutzungsformen auf das Klima genauer abzuschätzen. Dadurch können auch die Klimamodelle verbessert werden, die bisher das Wachstum von Partikeln nicht zufriedenstellend beschreiben konnten.

Tilo Arnhold

Publikation:

Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M., Paasonen, P., Stratmann, F., Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H. and Berndt, T. (2014): Schnelle Autoxidation bildet hochoxidierte RO2-Radikale in der Atmosphäre (Rapid autoxidation forms highly oxidiced RO2 radicals in the atmosphere). Angewandte Chemie (International Edition). E-pub ahead of print. doi: 10.1002/ange.201408566 http://dx.doi.org/ 10.1002/ange.201408566

Die Untersuchungen wurden gefördert vom der Europäischen Kommission, der Finnischen Akademie und dem Europäischen Forschungsrat ERC (ATMNUCLE).

Weitere Infos:

Dr. Torsten Berndt, Prof. Hartmut Herrmann Leibniz-Institut für Troposphärenforschung (TROPOS), Tel. +49-341-2717-7032, -7024 http://www.tropos.de/institut/abteilungen/chemie-der-atmosphaere/  http://www.tropos.de/institut/ueber-uns/mitarbeitende/hartmut-herrmann/

und

Tuija Jokinen, Dr. Mikael Kristian Ehn, Universität Helsinki, Tel. +358-294-151698, -151076 https://tuhat.halvi.helsinki.fi/portal/en/persons/tuija-jokinen%28d67c0c24-6d64-4b49-9e49-83c388955556%29.html 

https://tuhat.halvi.helsinki.fi/portal/en/persons/mikael-kristian-ehn%280f9f7088-93e0-457a-863c-969037a64ebf%29.html

oder

Tilo Arnhold, TROPOS-Öffentlichkeitsarbeit, Tel. +49-341-2717-7060 http://www.tropos.de/aktuelles/pressemitteilungen/

Links:

Forschung zur Partikelneubildung (Nukleation) am TROPOS: http://www.tropos.de/forschung/atmosphaerische-aerosole/prozessstudien-auf-kleinen-zeit-und-raumskalen/partikelneubildung-und-prozessierung-sekundaeraerosol/partikelneubildung-nukleation/ueberblick/  

Pressemitteilungen zum Thema:

Neue Gasphasenverbindungen bilden organische Partikelbestandteile (Pressemitteilung vom 26.02.2014) http://www.tropos.de/aktuelles/pressemitteilungen/details/neue-gasphasenverbindungen-bilden-organische-partikelbestandteile/

Pflanzen bremsen die Klimaerwärmung (Pressemitteilung vom 28.04.2013) http://www.tropos.de/aktuelles/pressemitteilungen/details/pflanzen-bremsen-die-klimaerwaermung/

NATURE: Neues Oxidationsmittel der Atmosphäre entdeckt, das Luftschadstoffe abbaut (Pressemitteilung vom 08.08.2012) http://www.tropos.de/aktuelles/pressemitteilungen/details/nature-neues-oxidationsmittel-der-atmosphaere-entdeckt-das-luftschad/

Wolken verändern die chemische Zusammensetzung und die Eigenschaften von Partikeln (Pressemitteilung vom 02.08.2012) http://www.tropos.de/aktuelles/pressemitteilungen/details/wolken-veraenderen-die-chemische-zusammensetzung-und-die-eigenschaften/ 

Das Leibniz-Institut für Troposphärenforschung (TROPOS) ist Mitglied der Leibniz-Gemeinschaft, die 89 selbständige Forschungseinrichtungen verbindet. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an.
Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen – u.a. in Form der WissenschaftsCampi - , mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 17.200 Personen, darunter 8.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,5 Milliarden Euro.
http://www.leibniz-gemeinschaft.de

Tilo Arnhold | TROPOS
Weitere Informationen:
http://www.tropos.de/aktuelles/pressemitteilungen/details/altbekannter-oxidationsmechanismus-auch-in-der-atmosphaere-aktiv-u/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Globale Klimaextreme nach Vulkanausbrüchen
22.08.2017 | Justus-Liebig-Universität Gießen

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen