Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Altbekannter Oxidationsmechanismus auch in der Atmosphäre aktiv – und das mit weitreichenden Folgen

10.12.2014

Forscher entschlüsseln Mechanismus der schnellen Bildung von extrem schwer flüchtigen organischen Verbindungen

Dass Kohlenwasserstoffe durch atmosphärischen Sauerstoff oxidiert werden können ist bereits seit 1875 bekannt. Bisher waren diese sogenannten “Autoxidationsprozesse“ jedoch nur in der kondensierten Phase erforscht.


Feldmessungen an der TROPOS-Station in Melpitz bei Leipzig halfen mit, die Zwischenprodukte auf dem Wege zur Bildung der ELVOCs zu identifizieren. In Melpitz zeigten sich deutlich der Einfluss der Vegetation und die Unterschiede zwischen Tag und Nacht.

Foto: Tilo Arnhold/ TROPOS


Laboraufbau mit CI-APi-TOF (chemical ionisation - atmospheric pressure interface –

time-of-flight) Massenspektrometern zum Nachweis hochoxidierten RO2-Radikale und nichtradikalischer Endprodukte

Foto: Dr. Torsten Berndt/ TROPOS

Jetzt ist einem internationalen Wissenschaftlerteam unter Beteiligung des Leibniz-Instituts für Troposphärenforschung (TROPOS) erstmals der Nachweis derartiger Prozesse in der Atmosphäre gelungen. In Laborexperimenten konnte mit Hilfe von neuesten analytischen Techniken der Mechanismus weitestgehend entschlüsselt werden, der dafür sorgt, dass Kohlenwasserstoffe, die aus der Vegetation in die Luft gelangen, auf einer kurzen Zeitskala von Sekunden in organische Produkte mit bis zu 12 Sauerstoff-Atomen umgewandelt werden können.

Diese hochoxidierten Produkte stellen extrem schwerflüchtige Verbindungen dar. Da diese das Partikelwachstum entscheidend vorantreiben können, werden so auch die Wolkenbildung und das Klimasystem beeinflusst, schreiben die Wissenschaftler aus Deutschland, Finnland und den USA im Fachjournal Angewandte Chemie. Die neuen Erkenntnisse könnten helfen, die Auswirkungen von natürlichen Emissionen der Vegetation auf das Klima besser zu verstehen.

Wälder geben große Mengen an flüchtigen organischen Verbindungen (VOCs) ab. Dazu gehören beispielsweise Alpha-Pinen und Limonen, der typische Duft von Nadelwäldern. Deren Reaktionsprodukte bilden das sogenannte sekundäre organische Aerosol. Dabei werden Gase zu Partikelbestandteilen umgewandelt.

Diese atmosphärischen Partikel können die Sonnenstrahlung reflektieren oder als Keime für Wolkentropfen fungieren. Prozesse, die großen Einfluss auf das Klima haben und daher von großem wissenschaftlichen Interesse sind. Allerdings sind die dazugehörigen Modellrechnungen bisher sehr ungenau, da es noch breite Wissenslücken dabei gibt, welche Rolle die von den Pflanzen abgegebenen Verbindungen für den Prozess der Partikelbildung und -wachstum genau spielen. Solange diese Prozesse aber nur unzureichend verstanden sind, fällt es schwer, genaue Prognosen zu machen. Eine Unsicherheit, die sich auch auf sämtliche Klimamodelle auswirkt.

Große Unsicherheiten bestehen vor allem beim Wachstum von neugebildeten Partikeln hin zu Wolkenkeimen, an denen Wasser kondensiert und dadurch die Wolkenbildung beginnt. Das Partikelwachstum in Größen von etwa zwei bis einhundert Nanometern würde schwerflüchtige organische Dämpfe erfordern, wurde lange spekuliert. Diese extrem schwer flüchtigen organischen Verbindungen - auf Englisch „extremely low-volatility organic compounds (ELVOCs)“ genannt – wurden erst vor kurzem durch Fortschritte in der Messtechnik nachweisbar. Anfang 2014 wurde dieser Nachweis im Fachmagazin NATURE veröffentlicht.

Über mögliche Bildungswege wurde anschließend in der Fachwelt spekuliert. Mit der jetzt veröffentlichten Studie von Wissenschaftlern des TROPOS und der Universität Helsinki in Zusammenarbeit mit amerikanischen Kollegen lösen die Atmosphärenchemiker einen weiteren Teil des Rätsels. Durch Laborversuche im Strömungsrohr des TROPOS sowie Feldmessungen in Melpitz bei Leipzig und im südfinnischen Hyytiäla konnten die Zwischenprodukte auf dem Wege zur Bildung der ELVOCs identifiziert werden.

„Unsere Untersuchungen haben gezeigt, dass die häufigsten Monoterpene wie Limonen und Alpha-Pinen innerhalb von Sekunden hochoxidierte RO2-Radikale mit bis zu 12 Sauerstoff-Atomen und nachfolgend die dazugehörigen nichtradikalischen Endprodukte bilden. Der Gesamtprozess in der Atmosphäre verläuft damit ähnlich zu dem bereits lange bekannten Autooxidationsprozess in der kondensierten Phase“, erklärt Dr. Torsten Berndt vom TROPOS. Unter Autooxidation wird in der Chemie ein Prozess verstanden, bei dem Stoffe mit Luftsauerstoff bei Umgebungstemperatur langsam umgewandelt werden. Diese Selbstoxidation sorgt zum Beispiel auch dafür, dass Kunststoffe spröde werden oder Lebensmittel verderben.

„Die Feldmessungen über den Wiesen von Melpitz und im Nadelwald von Hyytiäla in Finnland bestätigen die Laborergebnisse und weisen die Bedeutung der Autooxidation für die Oxidation der Kohlenwasserstoffe in der Atmosphäre nach. Die gebildeten hochoxidierten RO2-Radikale und ihre nichtradikalischen Endprodukte besitzen wahrscheinlich eine sehr geringe Flüchtigkeit. Deshalb sind sie für das Wachstum atmosphärischer Aerosole entscheidend und beeinflussen so die Wechselwirkungen zwischen Aerosol, Wolken und Klima“, unterstreicht Tujia Jokinen von der Universität Helsinki. Die neuen Erkenntnisse werden also helfen, den Beitrag der Vegetation und damit von verschiedenen Landnutzungsformen auf das Klima genauer abzuschätzen. Dadurch können auch die Klimamodelle verbessert werden, die bisher das Wachstum von Partikeln nicht zufriedenstellend beschreiben konnten.

Tilo Arnhold

Publikation:

Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M., Paasonen, P., Stratmann, F., Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H. and Berndt, T. (2014): Schnelle Autoxidation bildet hochoxidierte RO2-Radikale in der Atmosphäre (Rapid autoxidation forms highly oxidiced RO2 radicals in the atmosphere). Angewandte Chemie (International Edition). E-pub ahead of print. doi: 10.1002/ange.201408566 http://dx.doi.org/ 10.1002/ange.201408566

Die Untersuchungen wurden gefördert vom der Europäischen Kommission, der Finnischen Akademie und dem Europäischen Forschungsrat ERC (ATMNUCLE).

Weitere Infos:

Dr. Torsten Berndt, Prof. Hartmut Herrmann Leibniz-Institut für Troposphärenforschung (TROPOS), Tel. +49-341-2717-7032, -7024 http://www.tropos.de/institut/abteilungen/chemie-der-atmosphaere/  http://www.tropos.de/institut/ueber-uns/mitarbeitende/hartmut-herrmann/

und

Tuija Jokinen, Dr. Mikael Kristian Ehn, Universität Helsinki, Tel. +358-294-151698, -151076 https://tuhat.halvi.helsinki.fi/portal/en/persons/tuija-jokinen%28d67c0c24-6d64-4b49-9e49-83c388955556%29.html 

https://tuhat.halvi.helsinki.fi/portal/en/persons/mikael-kristian-ehn%280f9f7088-93e0-457a-863c-969037a64ebf%29.html

oder

Tilo Arnhold, TROPOS-Öffentlichkeitsarbeit, Tel. +49-341-2717-7060 http://www.tropos.de/aktuelles/pressemitteilungen/

Links:

Forschung zur Partikelneubildung (Nukleation) am TROPOS: http://www.tropos.de/forschung/atmosphaerische-aerosole/prozessstudien-auf-kleinen-zeit-und-raumskalen/partikelneubildung-und-prozessierung-sekundaeraerosol/partikelneubildung-nukleation/ueberblick/  

Pressemitteilungen zum Thema:

Neue Gasphasenverbindungen bilden organische Partikelbestandteile (Pressemitteilung vom 26.02.2014) http://www.tropos.de/aktuelles/pressemitteilungen/details/neue-gasphasenverbindungen-bilden-organische-partikelbestandteile/

Pflanzen bremsen die Klimaerwärmung (Pressemitteilung vom 28.04.2013) http://www.tropos.de/aktuelles/pressemitteilungen/details/pflanzen-bremsen-die-klimaerwaermung/

NATURE: Neues Oxidationsmittel der Atmosphäre entdeckt, das Luftschadstoffe abbaut (Pressemitteilung vom 08.08.2012) http://www.tropos.de/aktuelles/pressemitteilungen/details/nature-neues-oxidationsmittel-der-atmosphaere-entdeckt-das-luftschad/

Wolken verändern die chemische Zusammensetzung und die Eigenschaften von Partikeln (Pressemitteilung vom 02.08.2012) http://www.tropos.de/aktuelles/pressemitteilungen/details/wolken-veraenderen-die-chemische-zusammensetzung-und-die-eigenschaften/ 

Das Leibniz-Institut für Troposphärenforschung (TROPOS) ist Mitglied der Leibniz-Gemeinschaft, die 89 selbständige Forschungseinrichtungen verbindet. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an.
Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen – u.a. in Form der WissenschaftsCampi - , mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 17.200 Personen, darunter 8.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,5 Milliarden Euro.
http://www.leibniz-gemeinschaft.de

Tilo Arnhold | TROPOS
Weitere Informationen:
http://www.tropos.de/aktuelles/pressemitteilungen/details/altbekannter-oxidationsmechanismus-auch-in-der-atmosphaere-aktiv-u/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Expedition ans Ende der Welt
29.11.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lakkolithe können auch während eines Vulkanausbruchs entstehen
24.11.2016 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie