Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Algen formten den Schneeball Erde

02.09.2015

Die Entstehung eukaryotischer Zellen und die Diversifizierung des Lebens könnten zu extremen Eiszeiten geführt haben

Mehrmals hat sich die Erde in der Vergangenheit in einen Schneeball verwandelt. Die Ozeane gefroren teilweise zu Eis, die Landmassen verschwanden unter Schneedecken, selbst in Äquatornähe herrschte Winter. Jetzt haben Forscher unerwartete Mittäter für zumindest eine der globalen Eiszeiten ausgemacht: Algen.


Dass die Erde sich vor rund 700 Millionen Jahren in einen Ball aus Eis und Schnee verwandelte, könnte auch an der Entstehung eukaryotischer Algen gelegen haben. Mit deren Abbauprodukten erhöhte sich die Menge der Kondensationskeime in der Atmosphäre, sodass mehr und dichtere Wolken entstanden und weniger wärmendes Sonnenlicht auf die Erde traf.

© iStock/MihailUlianikov

Die Einzeller trugen vermutlich dazu bei, dass sich viel mehr Wolken bildeten, die das Sonnenlicht zurück ins All reflektierten. Dadurch kühlte die Erde ab. Christian Hallmann, der am Max-Planck-Institut für Biogeochemie in Jena und am Zentrum für Marine Umweltwissenschaften (MARUM) in Bremen forscht, hat gemeinsam mit Georg Feulner und Hendrik Kienert vom Potsdam-Institut für Klimafolgenforschung diese Theorie im Fachblatt Nature Geoscience veröffentlicht.

Vor etwa 700 Millionen Jahren war die Erde kein blauer, sondern ein weißer Planet. Wissenschaftler präsentieren jetzt eine neue Theorie darüber, wieso die Erde damals unter Schneemassen und Gletschern begraben lag. Sie klingt vielleicht paradox. Denn ausgerechnet eine wachsende Vielfalt des Lebens könnte mitverantwortlich dafür sein, dass die Bedingungen auf der Erde eher lebensfeindlich wurden.

Die Abkühlung wurde zwar vermutlich direkt ausgelöst, weil es zu einer starken Verwitterung kam, als der Superkontinent Rodinia auseinanderbrach, und die Menge an CO2 in der damaligen Atmosphäre deshalb stark abnahm. Doch dieser Mechanismus funktioniert nur, wenn das Klima bereits vorgekühlt war.

„Eine starke Diversifizierung von Algen könnte die perfekten Bedingungen für das Entstehen einer sogenannten Schneeball-Erde geschaffen haben“, sagt Christian Hallmann, Leiter einer Forschungsgruppe am Max-Planck-Institut für Biogeochemie und einer der Autoren der aktuellen Studie.

„In der Erdgeschichte gibt es viele Beispiele für die enge Wechselwirkung von Leben und Klima“, sagt Georg Feulner, Wissenschaftler am Potsdam-Institut für Klimafolgenforschung und Leitautor der Studie. „Die Zunahme bestimmter Algen vor etwa 800 Millionen Jahren hat das Klima deutlich abgekühlt und die nachfolgenden globalen Vereisungen wahrscheinlich erst möglich gemacht. Mit unserer Studie haben wir ein neues Puzzleteil entdeckt, um eine der faszinierendsten Episoden der Klimageschichte besser zu verstehen.“

Kurz bevor die Erde zum Schneeball wurde, haben sich eukaryotische Algen, die erstmals einen Zellkern besaßen und die Vorläufer aller mehrzelligen Lebewesen sind, stark diversifiziert und vermehrt. Diese Algen wirken als Wolkenmacher; Wolken wiederum halten wärmende Sonnenstrahlung von der Erde fern. „Ich habe schon seit Jahren mit dem Gedanken gespielt, dass das erste Aufkommen eukaryotischer Algen einen Klimaeffekt haben könnte“, sagt Hallmann.

Je mehr Algen, desto dichter die Wolken

Wenn Bakterien abgestorbene Algen zersetzen, kann die Atmosphäre mit Schwefelverbindungen angereichert werden, welche von den Algen stammen. Diese Aerosole dienen als Kondensationskeime für Wolken. Je mehr Aerosole sich in der Atmosphäre befinden, an desto mehr Stellen können sich die Wassertropfen festhalten. Es entstehen besonders dichte Wolken, die lange in der Atmosphäre verbleiben bevor sie abregnen. Weil die Sonnenstrahlung an den Wolken reflektiert wird, kühlt die Erde ab.

Dass eine dichtere Wolkendecke tatsächlich eine Mitschuld an der Schneeball-Erde tragen würde, haben Georg Feulner und Hendrik Kienert, Wissenschaftler des Potsdam Institutes für Klimafolgenforschung mit Klimamodellen errechnet. Sie simulierten die Lage der Kontinente vor 720 Millionen Jahren und veränderten sowohl die Konzentration von Kohlendioxid als auch die Wolkendecke. Es zeigte sich, dass erst eine Kombination aus sehr wenig Kohlendioxid und vielen Wolken, also vielen Aerosolen, die Erde in den Schneeballstatus kippen lassen kann.

„Dies bedeutet auch, dass es vor diesem massiven Aufkommen mariner Algen sehr schwierig gewesen sein könnte, eine Schneeball-Situation entstehen zu lassen“, erklärt Hallmann. „Unsere Studie liefert somit auch eine Erklärung, warum es in den Millionen Jahren davor gar keine Anzeichen für so einen drastischen Klimaumschwung gab“.

Eine neue Schneeball-Erde müssen wir zurzeit nicht fürchten

Ein Problem bleibt. „Wir können nicht mit hundertprozentiger Sicherheit sagen, ob die damaligen Algen tatsächlich in der Lage waren, die Schwefelverbindungen herzustellen, die als Aerosole dienen“, sagt Hallmann. Denn solche Rückschlüsse zu ziehen, ist sehr schwer. Zwar wissen die Forscher aus fossilen Funden, dass eukaryotische Algen sich vor 800 Millionen Jahren stark vermehrten. Aber welche Moleküle sie produzierten, ist nicht so einfach herauszufinden. Hallmann ist optimistisch: „Wir wissen, welche Algen heut zu Tage in der Lage sind, die nötigen Schwefelmoleküle her zu stellen. Laut molekularbiologischen Studien sind die Chancen hoch, dass zumindest eine dieser Algenlinien bereits vor dem Schneeball-Ereignis existiert hat“.

Auch heute noch gelten Algen als Hauptquelle für Kondensationskeime, die zur Wolkenbildung über den Meeren beitragen. Darüber hinaus entziehen Algen der Atmosphäre das Treibhausgas Kohlendioxid. Sie haben also gleich in zweifacher Weise eine kühlende Wirkung auf das Klima.

Das Klima der Erde schwankt seit der Planet vor 4,6 Milliarden Jahren geboren wurde. Die meiste Zeit über befindet sich unser Planet in einer Warmzeit. Dann sind selbst Nord- und Südpol frei von Schnee. Doch während ein paar extremer Eiszeiten war die Erde nahezu komplett mit Schnee bedeckt. Die letzten beiden solcher extremen Schneeball-Vereisungen fanden während des Cryogeniums, der Periode von 720 bis 635 Millionen Jahren vor unserer Zeit, statt. Für eine Rückkehr zu solchen Bedingungen besteht zurzeit keine Gefahr.


Ansprechpartner

Dr. Christian Hallmann
Max-Planck-Institut für Biogeochemie, Jena
Telefon: +49 421 218-65820

E-Mail: challmann@bgc-jena.mpg.de


Originalpublikation
Georg Feulner, Christian Hallmann und Hendrik Kienert

Snowball cooling after algal rise

Nature Geoscience, online veröffentlicht, 27. August 2015; doi: 10.1038/ngeo2523

Dr. Christian Hallmann | Max-Planck-Institut für Biogeochemie, Jena
Weitere Informationen:
http://www.mpg.de/9380966/schneeball-erde-algen-eukaryot

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klimawandel schwächt tropische Windsysteme
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht An der Wurzel des Amazonas: Bodentiefe bestimmt Vegetationstyp
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise