Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

A new Harvard report probes security risks of extreme weather and climate change

12.02.2013
Scientists identify security risks from climate change, and recommend investments in monitoring and forecasting to prepare for growing threats

Increasingly frequent extreme weather events such as droughts, floods, severe storms, and heat waves have focused the attention of climate scientists on the connections between greenhouse warming and extreme weather. Because of the potential threat to U.S. national security, a new study was conducted to explore the forces driving extreme weather events and their impacts over the next decade, specifically with regard to their implications for national security planning.

The report finds that the early ramifications of climate extremes resulting from climate change are already upon us and will continue to be felt over the next decade, directly impacting U.S. national security interests. "Lessons from the past are no longer of great value as a guide to the future," said co-lead author Michael McElroy, Gilbert Butler Professor of Environmental Studies at Harvard University. "Unexpected changes in regional weather are likely to define the new climate normal, and we are not prepared."

Changes in extremes include more record high temperatures; fewer but stronger tropical cyclones; wider areas of drought and increases in precipitation; increased climate variability; Arctic warming and attendant impacts; and continued sea level rise as greenhouse warming continues and even accelerates. These changes will affect water and food availability, energy decisions, the design of critical infrastructure, use of the global commons such as the oceans and the Arctic region, and critical ecosystem resources. They will affect both underdeveloped and industrialized countries with large costs in terms of economic and human security. The study identifies specific regional climate impacts—droughts and desertification in Mexico, Southwest Asia, and the Eastern Mediterranean, and increased flooding in South Asia—that are of particular strategic importance to the United States.

The report concludes that the risks related to extreme weather require that the U.S. sustain and augment its scientific and technical capacity to observe key indicators, monitor unfolding events, and forewarn of impending security threats as nations adapt to a changing climate. The study recommends a national strategy for strategic observations and monitoring— including greenhouse gas and aerosol emissions, ocean temperatures, and satellite observations of the Arctic—and improved forecast models. "Our critical observational infrastructure is at risk from declining funding," added co-lead author D. James Baker, Director of the Global Carbon Measurement Program at the William J. Clinton Foundation and former Administrator of the National Oceanic and Atmospheric Administration (NOAA). "Without that knowledge, the needs of civil society and national security for mitigation and adaptation will go unmet."

The report grew out of a series of workshops with an international group of leading climate scientists held at the National Academy of Sciences, Columbia University, and the Harvard University Center for the Environment. The study was conducted with funds provided by the Central Intelligence Agency. Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the view of the CIA or the U.S. Government.

Michael McElroy is the Gilbert Butler Professor of Environmental Studies at Harvard University with a joint appointment in the Department of Earth and Planetary Sciences the School of Engineering and Applied Sciences. He is a faculty associate of the Harvard University Center for the Environment. He studies changes in the composition of the atmosphere with an emphasis on the impact of human activity. His research includes investigations of processes affecting the abundance of ozone in the stratosphere and factors influencing the chemical composition of the troposphere. It explores the manner in which changes in the composition of the atmosphere affect climate. His research also addresses challenges for public policy posed by the rapid pace of industrialization in developing countries such as China and India while exploring alternative strategies for more sustainable development in mature economies such as the United States. Email: mbm@seas.harvard.edu; Telephone: 617-495-4359

D. James Baker, is Director, Global Carbon Measurement Program at the William J. Clinton Foundation, working with forestry programs in developing countries to reduce carbon dioxide emissions and alleviate poverty. He served as Administrator of the National Oceanic and Atmospheric Administration (NOAA) in the Clinton administration. He is also a a member of the U.S. Commission on Climate and Tropical Forests and of the Technical Advisory Panel for the World Bank's Forest Carbon Partnership Facility. He is a Visiting Senior Fellow at the London School of Economics and Political Science, and is an adjunct professor at the University of Pennsylvania and at the University of Delaware. He has more than 100 scientific publications and is the author of the book Planet Earth: The View from Space, published by Harvard University Press. Email: djamesbaker@comcast.net; Telephone: 215-939-2021

Download the full "Climate Extremes: Recent Trends with Implications for National Security" report at www.environment.harvard.edu/climate-extremes

Michael McElroy | EurekAlert!
Further information:
http://www.harvard.edu
http://www.environment.harvard.edu/climate-extremes

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie