Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

400 Millionen Jahre altes „Pixelauge“

15.03.2013
Vor rund 400 Millionen Jahren tummelten sich am Meeresgrund zahlreiche Trilobiten. Die ausgestorbenen, asselartig anmutenden Tiere verfügten bereits über sehr moderne Facettenaugen, mit denen sie unter anderem das Herannahen ihrer Fressfeinde gut erkennen konnten. Diese Entdeckung machte Privatdozentin Dr. Brigitte Schoenemann am Steinmann-Institut der Universität Bonn. Sie stellt nun ihre Ergebnisse zusammen mit einem Forscher der Universität Edinburgh in Natures „Scientific Reports“ vor.
Die Trilobiten (Dreilapper) waren von 521 Millionen Jahren bis zu einem Massenaussterben vor 251 Millionen Jahren in den Weltmeeren sehr verbreitet. Die asselartig anmutenden, einige Zentimeter großen Tiere lebten mit einem schützenden, kalkverstärkten Chitinpanzer versehen am Meeresgrund und ernährten sich dort wohl von Pflanzenresten, Aas und organischen Stoffen im Schlamm. Die Urtiere wurden von tintenfischähnlichen Feinden als Beute gejagt. „Die Trilobiten waren eine nahrhafte Mahlzeit, weil sie viel Protein enthielten“, sagt Privatdozentin Dr. Brigitte Schoenemann. Um diesem Schicksal zu entgehen, rollten sich die Urtiere bei einem Angriff blitzschnell zusammen und entzogen sich ihren Häschern.

Trilobiten mussten gut im Dämmerlicht sehen können

„Damit die Trilobiten auf diese Weise rechtzeitig flüchten konnten, mussten sie ihre Fressfeinde im dämmrigen Licht am Meeresgrund rechtzeitig erkennen“, berichtet Dr. Schoenemann. Wie die Augen der Urtiere genau funktionierten, erforschte die Physiologin am Steinmann-Institut für Geologie, Mineralogie und Paläontologie der Universität Bonn in der Arbeitsgruppe von Prof. Dr. Jes Rust. Eine sensationelle Entdeckung machte sie an Fossilien, die in der Nähe von Gerolstein in der Eifel, Bundenbach im Hunsrück und Laghdad in Marokko gefunden wurden. Zusammen mit Prof. Dr. Euan N.K. Clarkson von der Universität Edinburgh wies die Wissenschaftlerin nach, dass in den rund 400 Millionen Jahre alten Fossilien sogar die Feinstrukturen in den Facettenaugen außerordentlich gut erhalten waren.

Einmalige Einblicke in die sensorischen Strukturen der Urtiere

„Von den zu den Weichteilen zählenden Nervenzellen in den Augen wurde zuvor angenommen, dass sie nicht versteinern können“, sagt Dr. Schoenemann. „Außerdem sind diese Strukturen natürlich sehr klein.“ Aufnahmen im Computertomografen des Steinmann-Instituts der Universität Bonn zeigten jedoch, dass nicht nur die Linsen, sondern sogar auch die Sinneszellen und Zellen mit anderen Funktionen in den Facettenaugen der fossilisierten Trilobiten deutlich zu erkennen waren. Noch höher aufgelöste Bilder aus der Europäischen Synchrotron Radiation Facility (ESRF) in Grenoble ergaben einmalige Einblicke in die sensorischen Strukturen der Urtiere. „Erstmals konnten wir damit ein sensorisches System, ein Sinnesorgan, darstellen, das rund 400 Millionen Jahre alt ist“, sagt Dr. Schoenemann.

Jede Facette liefert wie beim Computerbildschirm einen Bildpunkt

Die bei zahlreichen heutigen Insekten, Krebsen und sogar schon manchen Trilobiten aus mehreren Hunderten bis Tausenden Facetten zusammengesetzten Augen ermöglichen oft einen riesigen Blickwinkel. Dr. Schoenemann: „Das Facettenauge ist wahrscheinlich deshalb so erfolgreich.“ Jede Facette liefert einen Bildpunkt – genauso wie das Pixel eines Computerbildschirms. Die Linsen bestehen bei den Trilobiten aus Kalzitkristallen, darunter befinden sich die Sinneszellen. Selbst der Sehnerv, der die Signale zum Gehirn leitet, ist in einer Versteinerung deutlich zu erkennen. Darüber hinaus verfügten die Urtiere über eine noch heute sehr effektive „Einrichtung“: An die Sinneszellen sind Strukturen gekoppelt, wie sie beim heute noch lebenden Pfeilschwanzkrebs zur Vorverarbeitung von Informationen dienen.

Erstaunlich moderne Bauprinzipien

Auffallend ist die vergleichsweise geringe Zahl an Facetten. „Diese Trilobiten waren an das Sehen bei schlechten Lichtverhältnissen angepasst“, berichtet die Physiologin. Große Linsen fangen viel Licht für die Sinneszellen ein – dafür haben dann nicht so viele Facetten auf den Augen Platz. Umgekehrt ist es bei einem guten Lichtangebot möglich, viele Linsen auf den Augen zu platzieren, was eine hohe Auflösung ermöglicht. „Die Facettenaugen dieser Urtiere waren bereits erstaunlich modern“, sagt Dr. Schoenemann. Ihr Bauprinzip ist bis heute etwa in den Augen von Libellen, Bienen und vielen Krebsen erhalten.

Publikation: Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites, Scientific Reports, DOI: 10.1038/srep01429

Kontakt:

Privatdozentin Dr. Brigitte Schoenemann
Steinmann-Institut für Geologie, Mineralogie
und Paläontologie der Universität Bonn
Tel. 02227/80058
E-Mail: bschoenem@t-online.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einblicke unter die Oberfläche des Mars
21.07.2017 | Jacobs University Bremen gGmbH

nachricht Tauender Permafrost setzt altes Treibhausgas frei
19.07.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten