Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

400 Millionen Jahre altes „Pixelauge“

15.03.2013
Vor rund 400 Millionen Jahren tummelten sich am Meeresgrund zahlreiche Trilobiten. Die ausgestorbenen, asselartig anmutenden Tiere verfügten bereits über sehr moderne Facettenaugen, mit denen sie unter anderem das Herannahen ihrer Fressfeinde gut erkennen konnten. Diese Entdeckung machte Privatdozentin Dr. Brigitte Schoenemann am Steinmann-Institut der Universität Bonn. Sie stellt nun ihre Ergebnisse zusammen mit einem Forscher der Universität Edinburgh in Natures „Scientific Reports“ vor.
Die Trilobiten (Dreilapper) waren von 521 Millionen Jahren bis zu einem Massenaussterben vor 251 Millionen Jahren in den Weltmeeren sehr verbreitet. Die asselartig anmutenden, einige Zentimeter großen Tiere lebten mit einem schützenden, kalkverstärkten Chitinpanzer versehen am Meeresgrund und ernährten sich dort wohl von Pflanzenresten, Aas und organischen Stoffen im Schlamm. Die Urtiere wurden von tintenfischähnlichen Feinden als Beute gejagt. „Die Trilobiten waren eine nahrhafte Mahlzeit, weil sie viel Protein enthielten“, sagt Privatdozentin Dr. Brigitte Schoenemann. Um diesem Schicksal zu entgehen, rollten sich die Urtiere bei einem Angriff blitzschnell zusammen und entzogen sich ihren Häschern.

Trilobiten mussten gut im Dämmerlicht sehen können

„Damit die Trilobiten auf diese Weise rechtzeitig flüchten konnten, mussten sie ihre Fressfeinde im dämmrigen Licht am Meeresgrund rechtzeitig erkennen“, berichtet Dr. Schoenemann. Wie die Augen der Urtiere genau funktionierten, erforschte die Physiologin am Steinmann-Institut für Geologie, Mineralogie und Paläontologie der Universität Bonn in der Arbeitsgruppe von Prof. Dr. Jes Rust. Eine sensationelle Entdeckung machte sie an Fossilien, die in der Nähe von Gerolstein in der Eifel, Bundenbach im Hunsrück und Laghdad in Marokko gefunden wurden. Zusammen mit Prof. Dr. Euan N.K. Clarkson von der Universität Edinburgh wies die Wissenschaftlerin nach, dass in den rund 400 Millionen Jahre alten Fossilien sogar die Feinstrukturen in den Facettenaugen außerordentlich gut erhalten waren.

Einmalige Einblicke in die sensorischen Strukturen der Urtiere

„Von den zu den Weichteilen zählenden Nervenzellen in den Augen wurde zuvor angenommen, dass sie nicht versteinern können“, sagt Dr. Schoenemann. „Außerdem sind diese Strukturen natürlich sehr klein.“ Aufnahmen im Computertomografen des Steinmann-Instituts der Universität Bonn zeigten jedoch, dass nicht nur die Linsen, sondern sogar auch die Sinneszellen und Zellen mit anderen Funktionen in den Facettenaugen der fossilisierten Trilobiten deutlich zu erkennen waren. Noch höher aufgelöste Bilder aus der Europäischen Synchrotron Radiation Facility (ESRF) in Grenoble ergaben einmalige Einblicke in die sensorischen Strukturen der Urtiere. „Erstmals konnten wir damit ein sensorisches System, ein Sinnesorgan, darstellen, das rund 400 Millionen Jahre alt ist“, sagt Dr. Schoenemann.

Jede Facette liefert wie beim Computerbildschirm einen Bildpunkt

Die bei zahlreichen heutigen Insekten, Krebsen und sogar schon manchen Trilobiten aus mehreren Hunderten bis Tausenden Facetten zusammengesetzten Augen ermöglichen oft einen riesigen Blickwinkel. Dr. Schoenemann: „Das Facettenauge ist wahrscheinlich deshalb so erfolgreich.“ Jede Facette liefert einen Bildpunkt – genauso wie das Pixel eines Computerbildschirms. Die Linsen bestehen bei den Trilobiten aus Kalzitkristallen, darunter befinden sich die Sinneszellen. Selbst der Sehnerv, der die Signale zum Gehirn leitet, ist in einer Versteinerung deutlich zu erkennen. Darüber hinaus verfügten die Urtiere über eine noch heute sehr effektive „Einrichtung“: An die Sinneszellen sind Strukturen gekoppelt, wie sie beim heute noch lebenden Pfeilschwanzkrebs zur Vorverarbeitung von Informationen dienen.

Erstaunlich moderne Bauprinzipien

Auffallend ist die vergleichsweise geringe Zahl an Facetten. „Diese Trilobiten waren an das Sehen bei schlechten Lichtverhältnissen angepasst“, berichtet die Physiologin. Große Linsen fangen viel Licht für die Sinneszellen ein – dafür haben dann nicht so viele Facetten auf den Augen Platz. Umgekehrt ist es bei einem guten Lichtangebot möglich, viele Linsen auf den Augen zu platzieren, was eine hohe Auflösung ermöglicht. „Die Facettenaugen dieser Urtiere waren bereits erstaunlich modern“, sagt Dr. Schoenemann. Ihr Bauprinzip ist bis heute etwa in den Augen von Libellen, Bienen und vielen Krebsen erhalten.

Publikation: Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites, Scientific Reports, DOI: 10.1038/srep01429

Kontakt:

Privatdozentin Dr. Brigitte Schoenemann
Steinmann-Institut für Geologie, Mineralogie
und Paläontologie der Universität Bonn
Tel. 02227/80058
E-Mail: bschoenem@t-online.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics