Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Sonar-Technologie Made in Germany - Hochaufgelöste 3D-Bildgebung auf kurze Distanzen

07.06.2017

Die Sonar-Technologie wird bereits seit vielen Jahren bei der Vermessung von Seeböden, in der Fischerei oder auch bei der Suche nach versunkenen Objekten am Meeresboden angewandt. Mit Hilfe neuartiger 3D-Sonar-Systeme des Fraunhofer-Instituts für Biomedizinische Technik IBMT kann dies nun effizienter und präziser erfolgen. Der Geschäftsbereich Sonar bündelt die Forschungs- und Entwicklungsaktivitäten im Bereich der akustischen Unterwassermesstechnik. Einen Schwerpunkt stellt die hochaufgelöste volumetrische Sonar-Bildgebung auf Distanzen von weniger als 25 m dar.
Das Fraunhofer IBMT stellt auf der diesjährigen OCEANS Konferenz in Aberdeen von 19.-22. Juni 2017 (Stand Nummer 4) aus.

Die Sonar-Technologie - die Untersuchung von Strukturen unter Wasser mit Hilfe von Schallsignalen - wird bereits seit vielen Jahren bei der Vermessung von Seeböden, in der Fischerei oder auch bei der Suche nach versunkenen Objekten am Meeresboden angewandt. Die hierfür verwendeten Systeme sind meist für große Messdistanzen ausgelegt und erreichen in der Regel eine relativ grobe räumliche Auflösung.


Echtzeitfähige 3D-Sonar-Kamera

Fraunhofer IBMT


3D-Rekonstruktion eines Messobjekts.

Fraunhofer IBMT

Viele Anwendungen im Unterwasserbereich benötigen eine hochaufgelöste Umgebungsvisualisierung auf kurze Distanz. Oft werden hierzu optische Kamerasysteme eingesetzt. Diese sind jedoch bei starker Wassertrübung zumeist unbrauchbar, weshalb Einsätze oftmals abgebrochen werden müssen. Mit Hilfe neuartiger 3D-Sonar-Systeme können diese Aufgaben nun effizienter und präziser erfüllt werden.

Der Geschäftsbereich Sonar der Hauptabteilung Ultraschall des Fraunhofer-Instituts für Biomedizinische Technik IBMT in Sulzbach bündelt die bisherigen und zukünftigen Forschungs- und Entwicklungsaktivitäten im Bereich der akustischen Unterwassermesstechnik. Ein Schwerpunkt der aktuellen Forschung und Entwicklung stellt die hochaufgelöste volumetrische Sonar-Bildgebung auf Distanzen von weniger als 25 m dar.

Hochauflösend bedeutet in diesem Kontext die Darstellung von Strukturen im Zentimeterbereich bei wenigen Metern Messabstand. Derzeit sind drei bildgebende Sonar-Systeme in einen Demonstratoraufbau überführt und werden zu Labor- und Feldmessungen an verschiedenen Objekten und Strukturen eingesetzt.

Eines dieser Systeme, ein Fächerecholot oder Multibeam Echosounder (MBES), erzeugt einen Schallfächer, der während der Messung über den Seeboden oder das abzubildende Objekt bewegt wird. Die Position der Sonar-Antenne wird hierbei kontinuierlich GPS-referenziert aufgezeichnet, sodass die einzelnen Bildschichten anschließend positionsrichtig zusammengefügt werden können, um eine exakte Repräsentation der vermessenen Struktur zu generieren. Das System eignet sich für alle Messungen an unbewegten Strukturen aus Distanzen bis zu 15 m Entfernung.

3D-Bildgebung in Echtzeit

Sollen Bewegungsvorgänge abgebildet oder Arbeitsprozesse unter Wasser visualisiert werden, so ist eine volumetrische Bildgebung in Echtzeit notwendig. Hierzu wurden zwei weitere Sonar-Systeme entwickelt, die aufgrund ihrer Funktionsweise eine dreidimensionale Abbildung ihrer Umgebung aus einer festen Position heraus erlauben. Und dies mit derselben hohen räumlichen Auflösung wie das Fächerecholot. Eines der Systeme wird in einer druckbeständigen Variante aufgebaut, sodass sogar ein Einsatz in der Tiefsee bei bis zu 600 bar erfolgen kann. Auch eine Miniaturisierung der Systeme wird derzeit vorangetrieben.

Neben Systemen zur 3D-Visualisierung entwickelt das Fraunhofer IBMT derzeit weitere Sonar-Systeme, wie etwa einen sedimentpenetrierenden Sub-Bottom-Profiler zur zentimetergenauen Vermessung von Sedimentschichten im Seeboden.

Die gesamte Bandbreite der Sonar-Technologien stellt das Fraunhofer IBMT auf der diesjährigen OCEANS Konferenz in Aberdeen von 19. bis zum 22. Juni 2017 (Stand Nummer 4) vor. Hier können sich interessierte Industrieunternehmen und Forschungsgruppen über die Kompetenzen und Leistungen des Geschäftsfelds Sonar informieren.

Ansprechpartner:

Dipl.-Ing. Michael Ehrhardt
Geschäftsfeldleiter Sonar
Fraunhofer-Institut für Biomedizinische Technik IBMT
Joseph-von-Fraunhofer-Weg 1
66280 Sulzbach
Telefon: 06897 / 9071 330
Fax: 06897 / 9071 302
E-Mail: michael.ehrhardt@ibmt.fraunhofer.de
https://www.ultraschall.fraunhofer.de

Weitere Informationen:

https://www.ibmt.fraunhofer.de/
https://www.ibmt.fraunhofer.de/de/ibmt-kernkompetenzen/ibmt-ultraschall.html
https://www.ibmt.fraunhofer.de/de/ibmt-kernkompetenzen/ibmt-ultraschall/ibmt-son...

Dipl.-Phys. Annette Maurer | Fraunhofer-Institut für Biomedizinische Technik IBMT

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tonmineral bewässert Erdmantel von innen
20.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Neue Einblicke in das 2004 Sumatra-Erdbeben
14.11.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie