Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwei MHH-Projekte erhalten Innovationspreise des Bundesforschungsministeriums

30.10.2009
Auflösbarer Knochenersatz aus Metall: Orthopäden wollen mit resorbierbaren Magnesiumimplantaten Unfallfolgen besser heilen / Besser hören: HNO-Klinik entwickelt neue Oberfläche auf Hörimplantaten

Erfolg für die Medizinische Hochschule Hannover (MHH): Gleich zwei Forscherteams gehören zu den Gewinnern des Innovationswettbewerbs Medizintechnik 2009, der vom Bundesministerium für Bildung und Forschung (BMBF) organisiert wird. Sie werden mit 750.000 Euro gefördert.

Wissenschaftler der Klinik für Orthopädie arbeiten an auflösbarem Knochenersatz aus Metall. Mit diesen resorbierbaren Magnesiumimplantaten wollen sie Unfallfolgen besser heilen können. Um das bessere Hören geht es den Forschern der Klinik für Hals-, Nasen- und Ohrenheilkunde (HNO). Sie entwickeln neue Oberflächen auf Hörimplantaten.

- Auflösbarer Knochenersatz aus Metall

Ein Team um PD Dr. Frank Witte vom Labor für Biomechanik und Biomaterialien der Orthopädischen Klinik gehört zu den Gewinnern. Das Projekt wird mit bis zu 400.000 Euro für die Durchführung grundlegender Untersuchungen gefördert. "Der Gewinn ist ein großer Ansporn für das ganze Team möglichst schnell die guten Ideen und Erfolge in die Klinik umzusetzen", betont Dr. Witte, der auch CrossBIT angehört, dem Verbundzentrum für Biokompatibilität und Implantat-Immunologie von MHH, Leibniz Universität Hannover und Tierärztlicher Hochschule Hannover. Gemeinsam mit Materialwissenschaftlern aus Geesthacht, Dresden und Obernburg entwickelt Dr. Wittes Team neuartige hochstabile Implantate aus Magnesiumfasern.

Nach Unfällen oder komplizierten Operationen brauchen Knochenverletzungen lange, um zu heilen. In der Zwischenzeit muss die fehlende Knochensubstanz durch Implantate ersetzt werden. "Die Nachteile der bisherigen Implantate reichen von mangelnder Stabilität über nicht vollständigen Abbau der Überbrückungssubstanz bis hin zu sehr hohen Kosten", beschreibt Dr. Witte die Probleme. Sein Team setzt auf hochstabile Implantate aus einem Verbund dünner, kurzer Magnesiumfasern. Die Vorteile: Ihre poröse Struktur unterstützt das Knochengewebe beim Wachstum; die neuen Knochenzellen können in die Zwischenräume hineinwachsen. Zugleich lösen sich die rein metallischen Implantate während des Heilungsprozesses vollständig und rückstandsfrei auf, nachdem der Knochen zu seiner einstigen Stabilität zurückgefunden hat. "Nach wenigen Monaten werden die Magnesiumfasern nicht mehr nachzuweisen sein und an ihrer Stelle hat der Körper wieder einen intakten Knochen gebildet", sagt Dr. Witte. "Diese neuartigen Implantate können die Lebensqualität der Patienten alleine schon wegen kürzerer Rehabilitationszeiten deutlich verbessern."

Seit dem Jahr 2003 forschen die Wissenschaftler an dieser Art von neuartigen Metallimplantaten. In Tierversuchen konnten sie bereits diese Art des Knochenersatzes, der sich nach getaner Arbeit selbst auflöst, erfolgreich einsetzen. "Wenn unsere Forschungserfolge anhalten, rechnen wir damit das neue Verfahren routinemäßig in fünf Jahren in der Klinik anbieten zu können", betont Dr. Witte.

- Besser hören mit neuer Oberfläche auf Hörimplantaten

Ein Team von Wissenschaftlern der HNO-Klinik arbeitet an einer neuen Oberfläche für Elektroden von Cochlea-Implantaten (CI). Nach der Implantation dieser Innenohrprothesen bildet sich oftmals eine Art Mantel aus Bindegewebszellen, der die Übertragung von der Elektrode auf den Hörnerven mindert, in gravierenden Fällen diese sogar zerstören kann. Um die Leistung des Implantats nicht zu beeinträchtigen, entwickeln die MHH-Forscher eine neuartige Elektrode, auf der Zellen nicht mehr anhaften können. Das Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) mit mehr als 350.000 Euro gefördert. Projektpartner sind das Institut für Bioprozess- und Analysenmesstechnik e.V. in Heilbad Heiligenstadt und das Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie in Erlangen.

"Der Kontakt zwischen einer Elektrode und lebendem biologischen Material ist bei Cochlea-Implantaten eine kritische Stelle", erklärt Professor Dr. Thomas Lenarz, Direktor der HNO-Klinik und des Hörzentrums Hannover. "Mit der Entwicklung einer neuartigen Struktur der Oberfläche von Implantaten können wir Elektroden gezielt elektrisch ansteuern und somit von anhaftenden Zellen reinigen."

Unter dem Titel "Nanostrukturierte Elektroden zur elektrischen Charakterisierung sowie zur Manipulation von Zellen" entwickeln die Wissenschaftler eine Strukturierung von Elektroden im Nanometer-Maßstab, das entspricht etwa einem Fünfzigtausendstel eines menschlichen Haares. Zusammen mit kurzzeitigen elektrischen Feldern soll der Bewuchs von Elektroden verhindert beziehungsweise der Elektrode-Zellkontakt beeinflusst werden. "Das stellt quasi eine Art Selbstreinigung der Elektrode dar", sagt Professor Lenarz. Damit verbessert sich die Signalübertragung eines Cochlea-Implantates und somit auch das Hören für den CI-Träger.

Weitere Information zum Thema Hören erhalten Sie bei Professor Dr. Thomas Lenarz, Telefon (0511) 532-6565.

Weitere Informationen zum Thema resorbierbare Magnesiumimplantate erhalten Sie bei PD Dr. Frank Witte, Telefon (0511) 532-8961, witte.frank@mh-hannover.de

Stefan Zorn | idw
Weitere Informationen:
http://www.mh-hannover.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics