Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich Licht und Bewegung verbinden

02.12.2014

Der Physiker Tobias Kippenberg misst und manipuliert kleine, aber mit blossem Auge noch sichtbare Oszillatoren, deren optische und mechanische Eigenschaften den Gesetzen der Quantenphysik folgen. Für seine innovative Forschungsarbeit wird der Wissenschaftler mit dem Nationalen Latsis-Preis 2014 ausgezeichnet.

Die Gesetze der Quantenphysik sind in der Regel auf mikroskopisch kleine Massstäbe wie z. B. Elementarteilchen oder Atome, anwendbar. Tobias Kippenberg, Professor am Laboratory of Photonics and Quantum Measurements der Eidgenössischen Technischen Hochschule Lausanne (EPFL), versucht, diese Teilchen anhand von makroskopischen "mechanischen Resonatoren", die aus Milliarden von Atomen bestehen, aufzuzeigen, zu steuern und zu erforschen. Für diese Grundlagenforschung im Bereich der Resonator Quanten-Optomechanik erhält der 38-jährige Physiker nun den Nationalen Latsis-Preis 2014.

Nach dem Studium an der Universität Aachen, gefolgt von einem Master-Studium, der Promotion und einem Postdoktorat am Caltech in Pasadena/Kalifornien leitete Tobias Kippenberg mehrere Jahre eine selbstständige Forschungsgruppe am Max-Planck-Institut für Quantenoptik in Deutschland, wo er mit dem Nobel-preisträger Theodor Hänsch zusammenarbeitete. 2008 wechselte er an die EPFL, an der er im Jahr 2013 zum ordentlichen Professor berufen wurde.

Winzige Strukturen
Zurzeit erforscht er nanoskalige Oszillatoren aus Glas in Form eines Velorads mit einem Durchmesser von 24 Mikrometern (halb so dick wie ein Haar). Im torischen Teil der Struktur (dem "Reifen" des Velorads) kann Licht zirkulieren, das, wenn es gegen die Wände der Struktur prallt, einen sog. Strahlungsdruck auf das Glas ausübt, der eine leichte mechanische Vibration erzeugen kann.
Diese Resonatoren sind in der Lage, auf kleinem Raum für relativ lange Zeit Photonen (Licht) und Phononen (Schwingungen) zu speichern.

Fast absoluter Nullpunkt
In den Experimenten von Tobias Kippenberg wird der Resonator zunächst auf eine Temperatur von einem halben Grad über dem absoluten Nullpunkt herunter gekühlt (-273,15 °C). Aber selbst diese Kälte reicht nicht aus, um in das Quantenregime vorzudrin-gen, da die thermische Anregung des mechanischen Oszillators eine sog. "Quanten-Dekohärenz" erzeugt. In einem im Jahr 2012 in der Zeitschrift Nature erschienenen Artikel haben Tobias Kippenberg und sein Team erstmals berichtet, dass sich durch weitere Reduzierung der Temperatur des mechanischen Oszillators durch eingekoppeltes Laserlicht, das Regime der Quanten-Kohärenten Kopplung zwischen Licht und einem Mechanischen Oszillator erreichen lässt. Während dieses Prozesses wird die Wechselwirkung zwischen Licht und Resonatorschwingung so stark, dass beide eine unzertrennliche Verbindung eingehen. Der Austausch von Energie zwischen dem mechanischen Oszillator und dem Lichtfeld erfolgt dabei so schnell, dass die Kohärenz der Quanten-Zustände gewahrt bleiben kann.

An diesem Punkt ist der Oszillator so kalt, dass er sich die meiste Zeit im Quantengrundzustand befindet. Dabei handelt es sich um einen minimalen Schwingungszustand, der nur mit Hilfe der Quantenmechanik beschrieben werden kann (die insbesondere besagt, dass ein Objekt selbst am absoluten Temperaturnullpunkt nie völlig unbeweglich ist).

Praktische Quanten
Parallel zur Grundlagenforschung betreibt Tobias Kippenberg auch anwendungsorientierte Forschung. So nutzt der Physiker eine weitere bemerkenswerte Eigenschaft der Mikroresonatoren: wird das Licht eines Laserstrahls mit Hilfe einer kleinen Glasfaser in einen Mikroresonator eingekoppelt, kann es einen "optischen Frequenzkamm" erzeugen.

Frequenzkämme dienen insbesondere zur ultrapräzisen Kalibrierung von astronomischen Spektrometern oder zur Steigerung der Präzision von Atomuhren. Das Problem besteht darin, dass die derzeitigen Generatoren die Grösse eines Tisches haben und sehr teuer und komplex sind. Die von Tobias Kippenberg hingegen sind winzig klein und werden nach den gleichen Verfahren wie Mikrochips hergestellt. Ein erstes Patent wurde 2007 angemeldet, das zweite folgte im Jahr 2013. Der deutsche Wissenschaftler hofft, dass der Vermarktung dieser Erfindung im Rahmen eines Start-Ups nun nichts mehr im Wege steht.

Der mit 100 000 Schweizer Franken dotierte Nationale Latsis-Preis ist eine der wichtigsten wissenschaftlichen Auszeichnungen der Schweiz. Er wird jedes Jahr vom SNF im Auftrag der Internationalen Latsis-Stiftung verliehen und honoriert herausragende wissen-schaftliche Leistungen einer in der Schweiz tätigen Forscherin oder eines Forschers im Alter von maximal 40 Jahren.
Die Übergabe dieses Preises, der zum 31. Mal verliehen wird, findet am 14. Januar 2015 von 10.30 bis 12.00 Uhr im Rathaus Bern statt. Die Teilnahme an der Veranstaltung steht allen Medien offen.

Kurzbiographie:
Tobias Kippenberg wurde 1976 in Berlin geboren und wuchs zunächst in Groningen, Niederlande, und später in Bremen, Deutschland, auf. Nach seinem Bachelorabschluss in Physik in Aachen wechselte er zum Caltech in Pasadena, Kalifornien, wo er sein Masterstudium (1999), sein Doktorat (2004) und ein Postdoktorat absolvierte. Nach einigen Jahren Tätigkeit als selbständiger Nachwuchs-Gruppenleiter am Max-Planck-Institut für Quantenoptik und einer Habilitation an der LMU München, in Deutschland folgte er dem Ruf an die EPFL, wo er im Jahr 2013 ordentlicher Professor wurde.

Ein ausführliches Porträt von Tobias Kippenberg findet sich in der neusten Ausgabe von «Horizonte», dem Schweizer Forschungsmagazin, das soeben erschienen ist: www.snf.ch/Horizonte
Bilder von Tobias Kippenberg können Sie hier herunterladen:
www.snf.ch > Fokus Forschung > Medien > Medienmitteilungen

Die Preise der Latsis-Stiftung
Die Latsis-Stiftung wurde 1975 von der griechischen Familie Latsis in Genf gegründet. Der Schweizerische Nationalfonds verleiht den Nationalen Latsis-Preis im Auftrag der Stiftung. Darüber hinaus gibt es vier mit jeweils 25‘000 Schweizer Franken dotierte Latsis-Universitätspreise, die von den Universitäten Genf und St. Gallen, der ETH Zürich und der EPFL verliehen werden.

Kontakt
Prof. Tobias Kippenberg
Laboratoire de Photonique et de Mesure Quantique (LPQM)
EPFL
CH-1015 Lausanne
Tel: +41 21 693 4428
E-Mail: tobias.kippenberg@epfl.ch

Text und Fotos dieser Pressemitteilung stehen auf der Website des Schweizerischen Nationalfonds zur Verfügung.


Weitere Informationen:

http://www.snf.ch/de/fokusForschung/newsroom/Seiten/news-141202-medienmitteilung-wenn-sich-licht-und-bewegung-verbinden.aspx

Medien - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Sechs innovative Projekte sind im Rennen um den begehrten European Health Award 2017
17.08.2017 | European Health Forum Gastein

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie