Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viel Energie steckt in einem Röntgen-Photon?

17.12.2013
Bundesministerium für Bildung und Forschung (BMBF) fördert Forschungsverbund der Universität Jena zu neuen Methoden der Röntgenspektroskopie

Wie bewegen sich Elektronen in Ionen und Atomen und wie laufen chemische Reaktionen ab? Dank hochauflösender Analyseverfahren können Wissenschaftler heute immer kleinere Details abbilden und immer schnellere Natur-Prozesse verfolgen.

„Mittlerweile sind wir in der Lage, tief ins Innere von Atomen und Molekülen zu sehen“, sagt Prof. Dr. Thomas Stöhlker vom Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena. Das sei unter anderem der rasanten Entwicklung von Quellen brillanter Röntgenstrahlung zu verdanken, so der Inhaber des Lehrstuhls für Atomphysik hochgeladener Ionen. Allerdings habe diese Entwicklung das verfügbare Instrumentarium zur Messung und Charakterisierung von Röntgen-Photonen abgehängt. „Dafür brauchen wir neue Werkzeuge“, macht Stöhlker deutlich.

Der Physiker und seine Kollegen von der Universität Jena und dem Jenaer Helmholtz-Institut haben daher im Verbund mit Forschern der Uni Heidelberg ein gemeinsames Projekt ins Leben gerufen: „PolarX: Präzisions-Röntgen-Spektroskopie und -Polarimetrie“. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Verbundprojekt, an dem auch das Max-Planck-Institut für Kernphysik in Heidelberg und die Physikalisch-Technische Bundesanstalt in Braunschweig als Kooperationspartner beteiligt sind, in den kommenden drei Jahren mit insgesamt rund 1,5 Millionen Euro. Neben der Arbeitsgruppe von Prof. Stöhlker sind auch die Teams um Prof. Dr. Stephan Fritzsche und Prof. Dr. Gerhard Paulus von der Uni Jena beteiligt.

Ziel des Projekts ist, die bereits etablierten Nachweismethoden aus dem optischen Bereich auf den Bereich des Röntgenspektrums auszuweiten und beide Bereiche methodisch aneinander zu koppeln bzw. aufeinander abzustimmen. Grundlage dieser Methoden ist die Wechselwirkung von elektromagnetischer Strahlung – bestehend aus Photonen – mit Atomen oder Ionen. „Trifft Strahlung geeigneter Wellenlänge und Frequenz etwa auf Elektronen in einem Atom, so gehen die Elektronen in einen „angeregten“ Zustand über“, erläutert Stöhlker, der Sprecher des Verbundprojekts ist. Die dabei absorbierte Energie ist für den jeweiligen Elektronenübergang charakteristisch. „Anhand solcher Absorptionsspektren lassen sich daher Aussagen zur Struktur der atomaren und chemischen Bindungen von Atomen und Molekülen gewinnen.“

Für den optischen Bereich sind diese spektroskopischen Methoden längst etabliert und vielfältig im Einsatz. „Im Vergleich zu Photonen im sichtbaren Bereich sind Röntgen-Photonen aber sehr viel energiereicher“, sagt Prof. Fritzsche. „Treffen diese auf Materie-Teilchen sind ganz andere Übergänge und Anregungszustände möglich“, so der theoretische Physiker, der eines der Jenaer Teilprojekte des Forschungsverbundes leitet. Doch diese Übergänge sind bislang nicht ausreichend charakterisiert und standardisiert, was die Jenaer Physiker und ihre Kooperationspartner nun vorantreiben wollen.

Präzise Energiestandards für Röntgen-Photonen sind nicht nur für die Grundlagenforschung wünschenswert. Auch in der Materialforschung, der Festkörperphysik oder bei hochauflösenden Bildgebungsverfahren lassen sich diese praktisch nutzen. Einen weiteren Anwendungsbereich sehen die Forscher in der Metrologie, der Lehre von Maßen und Maßsystemen. „Denn eine ganze Reihe von Standardmaßen basiert auf der Bestimmung elektronischer Übergänge in Atomen oder Ionen“, weiß Stöhlker und nennt als Beispiel die exakt laufenden Atomuhren. Deren „Taktgeber“ sind Elektronenübergänge in Cäsium-Atomen.

Kontakt:
Prof. Dr. Thomas Stöhlker
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena
Fröbelstieg 3, 07743 Jena
Tel.: 03641 / 947600
E-Mail: t.stoehlker[at]gsi.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Forschungspreis „Transformative Wissenschaft 2018“ ausgelobt
16.02.2018 | Wuppertal Institut für Klima, Umwelt, Energie gGmbH

nachricht Preis der DPG für superpräzisen 3-D-Laserdruck aus Karlsruhe
14.02.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics