Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viel Energie steckt in einem Röntgen-Photon?

17.12.2013
Bundesministerium für Bildung und Forschung (BMBF) fördert Forschungsverbund der Universität Jena zu neuen Methoden der Röntgenspektroskopie

Wie bewegen sich Elektronen in Ionen und Atomen und wie laufen chemische Reaktionen ab? Dank hochauflösender Analyseverfahren können Wissenschaftler heute immer kleinere Details abbilden und immer schnellere Natur-Prozesse verfolgen.

„Mittlerweile sind wir in der Lage, tief ins Innere von Atomen und Molekülen zu sehen“, sagt Prof. Dr. Thomas Stöhlker vom Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena. Das sei unter anderem der rasanten Entwicklung von Quellen brillanter Röntgenstrahlung zu verdanken, so der Inhaber des Lehrstuhls für Atomphysik hochgeladener Ionen. Allerdings habe diese Entwicklung das verfügbare Instrumentarium zur Messung und Charakterisierung von Röntgen-Photonen abgehängt. „Dafür brauchen wir neue Werkzeuge“, macht Stöhlker deutlich.

Der Physiker und seine Kollegen von der Universität Jena und dem Jenaer Helmholtz-Institut haben daher im Verbund mit Forschern der Uni Heidelberg ein gemeinsames Projekt ins Leben gerufen: „PolarX: Präzisions-Röntgen-Spektroskopie und -Polarimetrie“. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Verbundprojekt, an dem auch das Max-Planck-Institut für Kernphysik in Heidelberg und die Physikalisch-Technische Bundesanstalt in Braunschweig als Kooperationspartner beteiligt sind, in den kommenden drei Jahren mit insgesamt rund 1,5 Millionen Euro. Neben der Arbeitsgruppe von Prof. Stöhlker sind auch die Teams um Prof. Dr. Stephan Fritzsche und Prof. Dr. Gerhard Paulus von der Uni Jena beteiligt.

Ziel des Projekts ist, die bereits etablierten Nachweismethoden aus dem optischen Bereich auf den Bereich des Röntgenspektrums auszuweiten und beide Bereiche methodisch aneinander zu koppeln bzw. aufeinander abzustimmen. Grundlage dieser Methoden ist die Wechselwirkung von elektromagnetischer Strahlung – bestehend aus Photonen – mit Atomen oder Ionen. „Trifft Strahlung geeigneter Wellenlänge und Frequenz etwa auf Elektronen in einem Atom, so gehen die Elektronen in einen „angeregten“ Zustand über“, erläutert Stöhlker, der Sprecher des Verbundprojekts ist. Die dabei absorbierte Energie ist für den jeweiligen Elektronenübergang charakteristisch. „Anhand solcher Absorptionsspektren lassen sich daher Aussagen zur Struktur der atomaren und chemischen Bindungen von Atomen und Molekülen gewinnen.“

Für den optischen Bereich sind diese spektroskopischen Methoden längst etabliert und vielfältig im Einsatz. „Im Vergleich zu Photonen im sichtbaren Bereich sind Röntgen-Photonen aber sehr viel energiereicher“, sagt Prof. Fritzsche. „Treffen diese auf Materie-Teilchen sind ganz andere Übergänge und Anregungszustände möglich“, so der theoretische Physiker, der eines der Jenaer Teilprojekte des Forschungsverbundes leitet. Doch diese Übergänge sind bislang nicht ausreichend charakterisiert und standardisiert, was die Jenaer Physiker und ihre Kooperationspartner nun vorantreiben wollen.

Präzise Energiestandards für Röntgen-Photonen sind nicht nur für die Grundlagenforschung wünschenswert. Auch in der Materialforschung, der Festkörperphysik oder bei hochauflösenden Bildgebungsverfahren lassen sich diese praktisch nutzen. Einen weiteren Anwendungsbereich sehen die Forscher in der Metrologie, der Lehre von Maßen und Maßsystemen. „Denn eine ganze Reihe von Standardmaßen basiert auf der Bestimmung elektronischer Übergänge in Atomen oder Ionen“, weiß Stöhlker und nennt als Beispiel die exakt laufenden Atomuhren. Deren „Taktgeber“ sind Elektronenübergänge in Cäsium-Atomen.

Kontakt:
Prof. Dr. Thomas Stöhlker
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena
Fröbelstieg 3, 07743 Jena
Tel.: 03641 / 947600
E-Mail: t.stoehlker[at]gsi.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student
24.11.2017 | Universität des Saarlandes

nachricht Signal-Shaping macht Bits und Bytes Beine
23.11.2017 | VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie