Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UDE-Nachwuchswissenschaftler vom Bund gefördert: Reinste Nanopartikel für bessere Katalysatoren

24.07.2013
Seine Methode ist ungewöhnlich und hat Potenzial: Mit Laserlicht möchte Dr. Philipp Wagener von der Universität Duisburg-Essen (UDE) hochreine Nanomaterialien erzeugen, um die Katalyse und die Energietechnik effizienter zu machen. Für sein Projekt „INNOKAT“ erhält der Chemiker nun 1,52 Millionen Euro vom Bundesministerium für Bildung und Forschung (BMBF). Die Förderung läuft über vier Jahre.

Junge Wissenschaftler, die sich mit Nano- oder Werkstoffforschung beschäftigen, hatte das BMBF aufgerufen, am Nachwuchswettbewerb „NanoMatFutur“ teilzunehmen. Das Team um den 33-jährigen Wagener setzte sich mit seinem Projekt „INNOKAT – Integration und Applikation von ligandenfreien und kontrolliert ligandenfunktionalisierten Nanopartikeln in der Katalyse“ durch. Es geht um einen neuen Ansatz zur Herstellung heterogener Katalysatoren.

Diese spielen bei der chemischen Stoffumsetzung oder der Speicherung von Energie in chemischer Form (z.B. für nachhaltige Brennstoffe) eine entscheidende Rolle. Ihr wichtigster Bestandteil sind Nanopartikel aus Edelmetallen, an denen die katalytischen Reaktionen ablaufen. Hier gilt: Je reiner die Oberfläche dieser Partikel ist, desto aktiver sind sie. Nun braucht man jedoch bei der klassischen Herstellung solcher Nanopartikel üblicherweise Hilfsstoffe. Weil diese anschließend auf der Oberfläche der Partikel sitzen und die Reaktionen blockieren können, müssen sie aufwändig entfernt werden.

Anders beim Ansatz von Philipp Wagener. Der Chemiker, der im NanoEnergieTechnikZentrum forscht, arbeitet mit einer Methode, bei der extrem reine Nanopartikel entstehen: Regelmäßige Laserpulse treffen auf ein Plättchen aus Edelmetall, das in einer Flüssigkeit, z.B. Wasser, liegt. Dabei schießt der Laser winzige Partikel aus der Oberfläche heraus, die sich sofort in der Flüssigkeit verteilen und ohne Hilfsstoffe stabil bleiben. „Derartige Nanopartikel haften sehr gut auf dem Trägermaterial, mit dem sie gemeinsam den Katalysator bilden; sie benötigen keine potenziell giftigen oder desaktivierenden Stabilisatoren und bieten ihre komplette freie Oberfläche für die Reaktionen an“, erklärt Wagener.

Weitere Vorteile: Seine Methode lässt sich problemlos in bestehende Prozesse integrieren, und sie funktioniert für verschiedenste Nanopartikel auf nahezu beliebigen Trägern. „Diese neuen Katalysatoren testen wir anschließend in Modellreaktionen auf ihre Aktivität“, so der junge Forscher. „Wir planen beispielsweise, Wasserstoff zu erzeugen, indem wir Wasser unter Lichtbestrahlung spalten.“

Hinweis für die Redaktion:
Ein Foto von Dr. Philipp Wagener (Fotonachweis: UDE) stellen wir Ihnen unter folgendem Link zur Verfügung: http://www.uni-due.de/de/presse/pi_fotos.php

Weitere Informationen: http://www.uni-due.de/barcikowski/forsch.htm

Redaktion: Birte Vierjahn, Tel. 0203/379-8176, birte.vierjahn@uni-due.de

Katrin Koster | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen
22.03.2017 | Technische Universität Dresden

nachricht Effiziente Tools für bildgebende Studien
21.03.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt

23.03.2017 | Biowissenschaften Chemie

Neurone am Rande der Katastrophe: Wie das Gehirn durch kritische Zustände effizient arbeitet

23.03.2017 | Seminare Workshops

Müll in den Weltmeeren überall präsent: 1220 Arten betroffen

23.03.2017 | Ökologie Umwelt- Naturschutz