Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ThyssenKrupp Werkstoff-Innovationspreis verliehen

01.07.2011
Schon geringste Mengen Wasserstoff können den Zusammenhalt der Eisenatome im Stahl so schwächen, dass es unvorhergesehen zum Versagen von Bauteilen kommt.

Die grundlegenden Mechanismen dieses technischen Problems hat der Bochumer Maschinenbauer Dr.-Ing. Sebastian Kühn erforscht. Damit lässt sich die durch Wasserstoff verursachte Rissbildung in Bauteilen zuverlässig eingrenzen und vermeiden. Für seine herausragende Arbeit zum Nachweis der Sprödbruchsicherheit von modernen hochfesten Karosseriestählen hat er den mit 2.500 Euro dotierten Werkstoff-Innovationspreis 2011 von ThyssenKrupp erhalten.

Das Problem: Wasserstoff-Versprödung

Es genügt bereits die unvorstellbar kleine Menge von 1 ppm (part per million) – das entspricht einem Millionstel Gewichtsprozent (0,000001 %) – Wasserstoff in hochfesten Stählen. Er kann durch Feuchtigkeit bereits in die Stahlschmelze gelangt sein, der Wasserstoff kann aber auch beim Beizen oder durch Korrosion in das fertige Bauteil eindringen. Betroffen sind potenziell alle Bereiche der Technik: herunterfallende Schraubenköpfe von Windenergiemaschinen, brechende Fahrzeugfedern in Eisenbahnen und Kraftfahrzeugen, berstende Kesselrohre in fossil befeuerten Kraftwerken und Risse in hochfesten Karosserieblechen, die in modernen PKW zur Gewichtseinsparung beitragen sollen.

H-Atome: Wie eine Mondfinsternis im Stahl

Wasserstoff mit der Nr. 1 im Periodensystem der Atome ist das kleinste Atom überhaupt. Es hat mit seinen geringen Durchmessern keine Schwierigkeit, in das Atomgitter des Stahls mit seiner wesentlich größeren „Maschenweite“ einzudringen und sich dort sehr schnell zu den am höchsten belasteten Bereichen zu begeben, wo von außen einwirkende Kräfte das Gitter elastisch aufgeweitet haben. Haben sich genügend Wasserstoffatome an einem dieser Punkte zusammengefunden und sich wie eine „Mondfinsternis“ in die Bindungen zwischen den Eisenatomen geschoben, dann können die Eisenatome wie in einer Kettenreaktion ihren Zusammenhalt verlieren und das Bauteil bricht spontan. Da das Zusammenrotten der Wasserstoffatome viele Tage in Anspruch nehmen kann, tritt dieses Versagen zu einem Zeitpunkt ein, der nicht vorherzusagen ist. Daher gehören derartige „Havarien“ zu den unangenehmsten Schadensmechanismen der Technik.

Grenzen der Rissbildung ausgelotet

Dr. Sebastian Kühn hat in seiner Dissertation „Einfluss von diffusiblem Wasserstoff auf die mechanischen Eigenschaften von hochfesten Mehrphasenstählen unter Berücksichtigung der Kaltverfestigung“ nachgewiesen, bis zu welchen Grenzen die modernen hochfesten Karosseriebleche eingesetzt werden können, ohne dass die so genannte wasserstoffinduzierte Rissbildung eintritt (wegen des verzögerten Auftretens und aufgrund der physikalisch-chemischen Vorgänge auch „kathodische Spannungsrisskorrosion“ genannt). Kühn leistet einen wesentlichen Beitrag, um sicher vorhersehen zu können, dass eine Rissbildung ausbleibt. Damit liefert er eine Grundlage für die betriebssichere Anwendung der High-Tech-Stähle unter allen real vorkommenden Belastungsmöglichkeiten für eine Fahrzeugkarosserie.

Erforscht: Was unter Extrembelastungen passiert

In seiner Dissertation gibt Dr. Kühn darüber hinaus mit Hilfe von Experimenten Antwort auf die Frage, was unter Extrembelastungen z. B. an schroffen Querschnittsübergängen oder gar Kerben in Stahlbauteilen passiert: Die Arbeit zeigt beispielsweise, welche Spannungszustände sich dort maximal einstellen, wie viel Zeit unterschiedliche Wasserstoffgehalte jeweils benötigen, um Risse auszulösen, und welcher „ortsspezifische“ Wasserstoffgehalt erreicht wird. Für die Untersuchungen war es nicht nur erforderlich, mit einer Kapillare eine in Mikrometerbereichen messende Wasserstoffanalytik anzuwenden, Dr. Kühn hat zudem die übliche Wasserstoffanalytik mit dem neuen HCA-Verfahren (Hydrogen Collecting Analysis) um mehrere Zehnerpotenzen in der Nachweisgrenze verbessert.

Kooperation RUB und ThyssenKrupp

ThyssenKrupp ist seit knapp zehn Jahren Kooperationspartner der Ruhr-Universität Bochum und vergibt u. a. den Werkstoff-Innovationspreis für hervorragende Leistungen in der Werkstoff-Forschung. Die Kooperation umfasst Tutorenprogramme für Studierende, Informationsveranstaltungen mit unterschiedlichen Schwerpunkten, Exkursionen zu den verschiedenen Standorten des Konzerns, Praktikantenbetreuung und gemeinsame Forschungsprojekte zu aktuellen und grundlegenden technisch-wissenschaftlichen Fragestellungen.

Weitere Informationen

Prof. Dr.-Ing. Michael Pohl, Institut für Werkstoffe der RUB, Werkstoffprüfung, Tel. 0234/32-25905, E-Mail: pohl@wp.ruhr-uni-bochum.de

Dr.-Ing. Sebastian Kühn, Werkstoffprüfung, Tel. 0234/32-25921, E-Mail: kuehn@wp.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie