Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ThyssenKrupp Werkstoff-Innovationspreis verliehen

01.07.2011
Schon geringste Mengen Wasserstoff können den Zusammenhalt der Eisenatome im Stahl so schwächen, dass es unvorhergesehen zum Versagen von Bauteilen kommt.

Die grundlegenden Mechanismen dieses technischen Problems hat der Bochumer Maschinenbauer Dr.-Ing. Sebastian Kühn erforscht. Damit lässt sich die durch Wasserstoff verursachte Rissbildung in Bauteilen zuverlässig eingrenzen und vermeiden. Für seine herausragende Arbeit zum Nachweis der Sprödbruchsicherheit von modernen hochfesten Karosseriestählen hat er den mit 2.500 Euro dotierten Werkstoff-Innovationspreis 2011 von ThyssenKrupp erhalten.

Das Problem: Wasserstoff-Versprödung

Es genügt bereits die unvorstellbar kleine Menge von 1 ppm (part per million) – das entspricht einem Millionstel Gewichtsprozent (0,000001 %) – Wasserstoff in hochfesten Stählen. Er kann durch Feuchtigkeit bereits in die Stahlschmelze gelangt sein, der Wasserstoff kann aber auch beim Beizen oder durch Korrosion in das fertige Bauteil eindringen. Betroffen sind potenziell alle Bereiche der Technik: herunterfallende Schraubenköpfe von Windenergiemaschinen, brechende Fahrzeugfedern in Eisenbahnen und Kraftfahrzeugen, berstende Kesselrohre in fossil befeuerten Kraftwerken und Risse in hochfesten Karosserieblechen, die in modernen PKW zur Gewichtseinsparung beitragen sollen.

H-Atome: Wie eine Mondfinsternis im Stahl

Wasserstoff mit der Nr. 1 im Periodensystem der Atome ist das kleinste Atom überhaupt. Es hat mit seinen geringen Durchmessern keine Schwierigkeit, in das Atomgitter des Stahls mit seiner wesentlich größeren „Maschenweite“ einzudringen und sich dort sehr schnell zu den am höchsten belasteten Bereichen zu begeben, wo von außen einwirkende Kräfte das Gitter elastisch aufgeweitet haben. Haben sich genügend Wasserstoffatome an einem dieser Punkte zusammengefunden und sich wie eine „Mondfinsternis“ in die Bindungen zwischen den Eisenatomen geschoben, dann können die Eisenatome wie in einer Kettenreaktion ihren Zusammenhalt verlieren und das Bauteil bricht spontan. Da das Zusammenrotten der Wasserstoffatome viele Tage in Anspruch nehmen kann, tritt dieses Versagen zu einem Zeitpunkt ein, der nicht vorherzusagen ist. Daher gehören derartige „Havarien“ zu den unangenehmsten Schadensmechanismen der Technik.

Grenzen der Rissbildung ausgelotet

Dr. Sebastian Kühn hat in seiner Dissertation „Einfluss von diffusiblem Wasserstoff auf die mechanischen Eigenschaften von hochfesten Mehrphasenstählen unter Berücksichtigung der Kaltverfestigung“ nachgewiesen, bis zu welchen Grenzen die modernen hochfesten Karosseriebleche eingesetzt werden können, ohne dass die so genannte wasserstoffinduzierte Rissbildung eintritt (wegen des verzögerten Auftretens und aufgrund der physikalisch-chemischen Vorgänge auch „kathodische Spannungsrisskorrosion“ genannt). Kühn leistet einen wesentlichen Beitrag, um sicher vorhersehen zu können, dass eine Rissbildung ausbleibt. Damit liefert er eine Grundlage für die betriebssichere Anwendung der High-Tech-Stähle unter allen real vorkommenden Belastungsmöglichkeiten für eine Fahrzeugkarosserie.

Erforscht: Was unter Extrembelastungen passiert

In seiner Dissertation gibt Dr. Kühn darüber hinaus mit Hilfe von Experimenten Antwort auf die Frage, was unter Extrembelastungen z. B. an schroffen Querschnittsübergängen oder gar Kerben in Stahlbauteilen passiert: Die Arbeit zeigt beispielsweise, welche Spannungszustände sich dort maximal einstellen, wie viel Zeit unterschiedliche Wasserstoffgehalte jeweils benötigen, um Risse auszulösen, und welcher „ortsspezifische“ Wasserstoffgehalt erreicht wird. Für die Untersuchungen war es nicht nur erforderlich, mit einer Kapillare eine in Mikrometerbereichen messende Wasserstoffanalytik anzuwenden, Dr. Kühn hat zudem die übliche Wasserstoffanalytik mit dem neuen HCA-Verfahren (Hydrogen Collecting Analysis) um mehrere Zehnerpotenzen in der Nachweisgrenze verbessert.

Kooperation RUB und ThyssenKrupp

ThyssenKrupp ist seit knapp zehn Jahren Kooperationspartner der Ruhr-Universität Bochum und vergibt u. a. den Werkstoff-Innovationspreis für hervorragende Leistungen in der Werkstoff-Forschung. Die Kooperation umfasst Tutorenprogramme für Studierende, Informationsveranstaltungen mit unterschiedlichen Schwerpunkten, Exkursionen zu den verschiedenen Standorten des Konzerns, Praktikantenbetreuung und gemeinsame Forschungsprojekte zu aktuellen und grundlegenden technisch-wissenschaftlichen Fragestellungen.

Weitere Informationen

Prof. Dr.-Ing. Michael Pohl, Institut für Werkstoffe der RUB, Werkstoffprüfung, Tel. 0234/32-25905, E-Mail: pohl@wp.ruhr-uni-bochum.de

Dr.-Ing. Sebastian Kühn, Werkstoffprüfung, Tel. 0234/32-25921, E-Mail: kuehn@wp.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.
24.04.2017 | Deutsche Hochschulmedizin e.V.

nachricht EU-Förderung in Millionenhöhe für Regensburger Wissenschaftler
21.04.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen