Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Theoretische Chemie am Hochleistungsrechner: Land und DFG fördern Ulmer Forschungscluster

12.08.2013
In der Chemie wird immer öfter abseits vom Labor und Schreibtisch am Hochleistungsrechner geforscht.

Die Bedingungen an der Universität Ulm sind gut: Gefördert vom Land und von der Deutschen Forschungsgemeinschaft wird ein so genanntes bwForCluster im Bereich theoretische Chemie eingerichtet. Alle landesweit verfügbaren Rechencluster werden in Ulm gebündelt und Chemikern aus ganz Baden-Württemberg zur Verfügung gestellt.

Mithilfe von Computersimulationen analysiert zum Beispiel Martin Korth, Juniorprofessor am Ulmer Institut für Theoretische Chemie, Wirkungsweisen von Medikamenten. Was passiert, wenn ein Arzneistoff an ein bestimmtes Molekül andockt? Und welche Rolle spielen dabei quantenchemische Prozesse? Um diese Fragen zu beantworten, braucht der Chemiker große Rechenkapazitäten, die schon bald an der Universität Ulm zur Verfügung stehen werden. Das Land Baden-Württemberg und die Deutsche Forschungsgemeinschaft (DFG) unterstützen das Hochleistungsrechen und die Einrichtung großer Speicherkapazitäten mit insgesamt acht Millionen Euro. Davon fließen drei Millionen Euro nach Ulm.

Konkret wird in der Donaustadt ein so genanntes bwForCluster im Bereich Theoretische Chemie eingerichtet. Am hiesigen Kommunikations- und Informationszentrum (kiz) sollen also landesweit verfügbare Rechencluster in einem kooperativen Versorgungsmodell gebündelt werden. Diese hohen Rechenkapazitäten stehen aber nicht nur Ulmer Forschern, sondern Chemikern aus ganz Baden-Württemberg zur Verfügung. Entsprechende Geräte werden zu gleichen Teilen vom Land und von der DFG finanziert.

Die Förderung erfolgt im Zuge von bwHPC (High Performance Computing, HPC) und bwDATA zur Speicherung und Verarbeitung großer Datenmengen. Beide Konzepte wurden vom Ministerium für Wissenschaft, Forschung und Kunst (MWK) sowie vom Arbeitskreis der Leiter der Wissenschaftlichen Rechenzentren erstellt.

„Die Einwerbung des bwForClusters für Theoretische Chemie ist ein großartiger Erfolg für unser kiz. Die zusätzlichen Rechnerkapazitäten werden dringend für das High Performance Computing in der Chemie benötigt, um zum Beispiel Rechnungen zu chemischen Prozessen durchzuführen, die in Batterien oder an Katalysatoren ablaufen. Solche Simulationen können zu einem ein besseren Verständnis der (elektro-)chemischen Energiewandlung und –speicherung beitragen", sagt Professor Axel Groß, Vizepräsident für Forschung und Informationstechnologie. Durch die Einrichtung des bwForClusters würden Engpässe in der Versorgung mit Rechenzeit, wie sie momentan vorkommen, vermieden, so dass die führende Rolle von Baden-Württemberg und speziell der Uni Ulm auf diesem Gebiet weiter ausgebaut werden könne. Als Leiter des Instituts für Theoretische Chemie ist Axel Groß ein potentieller Nutzer des Ulmer Clusters.

Ein weiteres bwForCluster wird übrigens in Mannheim/Heidelberg für bestimmte Bereiche der Biologie und für die Wirtschafts- und Sozialwissenschaften eingerichtet. So genannte „Tiger Teams“ sollen die Nutzer aus der Wissenschaft mit IT-Sachverstand und fachspezifischen Kenntnissen, also im Fall Ulm aus der Theoretischen Chemie, unterstützen. Diese Teams werden projektbezogen aufgestellt, um die Wissenschaftler gezielt bei der effizienten Nutzung der Cluster für ihre laufenden Forschungsprojekte unterstützen zu können.

Aktuelle Entwicklungen im Wissenschaftsbetrieb erfordern vermehrt Simulationen, eine aufwändige Datenanalyse und viel Speicherplatz. „Die Verarbeitung großer Datenmengen ist heute eine entscheidende Grundlage in vielen Bereichen wissenschaftlicher Forschung. Damit unsere exzellente Forschungslandschaft weiterhin weltweit mit an der Spitze agieren kann, ist sie auf eine konkurrenzfähige Infrastruktur zwingend angewiesen. Zusammen mit der DFG investieren wir substantiell in diese Infrastruktur und damit in die Zukunft unserer Forschung“, wird auch die baden-württembergische Wissenschaftsministerin Theresia Bauer in einer Pressemitteilung des MWK zitiert.

Die Konzepte bwHPC und bwDATA sind also äußerst zeitgemäß. Tatsächlich wäre ihre Umsetzung ohne die Netzinfrastruktur des Landeshochschulnetzes BelWü nicht möglich: BelWü verbindet alle Landesuniversitäten über 10 Gigabit miteinander – das ist im bundesweiten Vergleich spitze. Die Verzehnfachung der jetzigen Bandbreite soll 2014 stattfinden. Um das Hochleistungsnetz hat sich landesweit vor allem der gerade verabschiedete ehemalige Leiter des kiz, Professor Hans Peter Großmann, verdient gemacht. Seine Aufgaben hat jetzt Professor Stefan Wesner übernommen.

Weitere Informationen:

Thomas Nau: 0731/50-22464, thomas.nau@uni-ulm.de
Prof. Stefan Wesner: 0731/50-22500, stefan.wesner@uni-ulm.de

Annika Bingmann | idw
Weitere Informationen:
http://www.uni-ulm.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen
22.03.2017 | Technische Universität Dresden

nachricht Effiziente Tools für bildgebende Studien
21.03.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie