Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Technologische Innovationen durch Spinnenseide – DECHEMA-Preis 2013 für Prof. Thomas Scheibel

04.11.2013
Für seine bahnbrechenden Forschungsarbeiten zur biotechnologischen Herstellung und Charakterisierung von Spinnenseiden-Proteinen erhält Prof. Dr. Thomas Scheibel, der an der Universität Bayreuth den Lehrstuhl Biomaterialien leitet, den diesjährigen DECHEMA-Preis der Max-Buchner-Stiftung.

Am 29. November 2013 wird er die Auszeichnung im Rahmen eines Festkolloquiums im DECHEMA-Haus in Frankfurt am Main entgegennehmen. Mit dem seit 1951 jährlich vergebenen Preis werden insbesondere jüngere Wissenschaftlerinnen und Wissenschaftler für herausragende Forschungsleistungen auf den Gebieten der Technischen Chemie, Verfahrenstechnik, Biotechnologie und Chemischen Apparatetechnik gewürdigt.


Prof. Dr. Thomas Scheibel,
Lehrstuhl Biomaterialien, Universität Bayreuth

Foto: Prof. Dr. Thomas Scheibel;
zur Veröffentlichung frei.

Ein Hauptkriterium für die Auswahl der Preisträger ist eine enge Verflechtung von Forschung und praktischer Anwendung – und gerade hierfür sind die Arbeiten von Prof. Dr. Thomas Scheibel, der sich auf die Erforschung biogener Materialien spezialisiert hat, ein erfolgreiches Beispiel.

Die weltweit rund 42.000 bekannten Spinnenarten produzieren Seidenfäden für Spinnennetze, aber auch für Kokons und Klebstoffe. In allen Fällen sind

die Seidenfäden dünner als menschliche Haare, ihr Durchmesser liegt meist zwischen 1 und 5 Mikrometer. Spinnenseide ist dabei fünfmal so reißfest wie Stahl, aber besitzt dennoch eine Elastizität wie Gummi.

Daher sind die Proteine der Spinnenseide ein hochattraktives Material für eine Vielzahl technologischer Anwendungen. Die Proteine lassen sich beispielsweise in Nanofasern überführen, die zu Vliesstoffen für die Staubfilterung und Luftreinhaltung weiterverarbeitet werden können.

Des Weiteren sind Proteine der Spinnenseide ein Rohstoff für extrem dünne Filme, die als Oberflächenbeschichtungen oder als Verpackungsmaterial zum Einsatz kommen. Gieß- oder Sprühverfahren erzeugen aus Seidenproteinen extrem dünne und dennoch sehr widerstandsfähige Folien, die herkömmlichen Folien aus Kunststoff hinsichtlich ihrer Luft- und Wasserdurchlässigkeit überlegen sind.

Für die pharmazeutische Industrie und die Medizintechnik wiederum sind Kapseln interessant, in denen Enzyme eingeschlossen werden können. Erst vor kurzem ist einer Forschungsgruppe um Prof. Scheibel erstmals die Herstellung von Kapseln gelungen, die zwei Funktionen gleichzeitig erfüllen: Sie schützen die eingeschlossenen Enzyme vor der Zersetzung und erlauben es zugleich, deren Aktivität von außen zu steuern und zu beobachten. Daraus ergeben sich völlig neue Möglichkeiten für die medizinische Diagnostik.

Im März 2013 wurde auf einer Pressekonferenz in München bekannt gegeben, dass es erstmals gelungen ist, aus biotechnologisch erzeugten Proteinen künstliche Spinnenseiden-Fasern herzustellen, welche die gleichen mechanischen Eigenschaften wie natürliche Spinnenseide haben. Die künstliche Spinnenseide trägt den markenrechtlich geschützten Namen „Biosteel“. Sie ist ein Produkt der von Prof. Scheibel mitgegründeten Firma AMSilk mit Sitz in Planegg/Martinsried und beruht wesentlich auf Forschungs- und Entwicklungsarbeiten von Prof. Scheibel und seinen Mitarbeitern am Lehrstuhl Biomaterialien der Universität Bayreuth.

„Durch das hervorragende Forschungsumfeld an der Ingenieurwissenschaftlichen Fakultät der Universität Bayreuth, mit einer engen Anbindung an die Naturwissenschaften – besonders in den Profilfeldern Molekulare Biowissenschaften, Polymer- und Kolloidforschung sowie Neue Materialien – wird die Grundlage geschaffen, wissenschaftliche Fragen mittels multidisziplinärer Ansätze zu verfolgen. Dies war eine Grundvoraussetzung für den Erfolg der letzten Jahre“, erklärt Prof. Scheibel.

Zur Person:
Thomas Scheibel wurde 1969 in Regensburg geboren. Nach dem Abitur studierte er Biochemie an der Universität Regensburg, wo er 1998 mit einer Arbeit zur Struktur-Funktions-Beziehung von Hsp90 aus S. cerevisiae promovierte. Es folgte ein dreijähriges Postdoktorat an der University of Chicago/USA. Von 2001 bis 2007 war er als Arbeitsgruppenleiter am Lehrstuhl für Biotechnologie der TU München (Prof. Dr. Johannes Buchner) tätig. Thema der 2007 abgeschlossenen Habilitation waren „Conformational changes and self-assembly of proteins“. Im November 2007 übernahm Prof. Dr. Thomas Scheibel die Leitung des neu eingerichteten Lehrstuhls Biomaterialien an der ingenieurwissenschaftlichen Fakultät der Universität Bayreuth. Er gehört dem Editorial Board verschiedener Zeitschriften an und ist Sprecher des Fachausschusses „Bioinspirierte Materialien und Bionik“ der Deutschen Gesellschaft für Materialkunde (DGM). Prof. Scheibel wurde u.a. mit dem Karl-Heinz-Beckurts-Preis (2008) und der Heinz Maier-Leibnitz-Medaille (2007) ausgezeichnet; 2007 war er Sieger im bundesweiten Ideenwettbewerb "Bionik – Innovation aus der Natur" des Bundesministeriums für Bildung und Forschung (BMBF).

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2013/280-DECHEMA-Preis-2013.pdf

Weitere Berichte zu: Biomaterial Bionik Biotechnologie DECHEMA-Preis Folie Kapsel Protein Seidenfäden Spinnenseide enzyme

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie