Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stiftung fördert Chirurgen mit 183.000 Euro

11.01.2012
Über 180.000 Euro stellt die Else Kröner-Fresenius-Stiftung dem Forscherteam um Prof. Dr. Raymund E. Horch, Direktor der Plastisch- und Handchirurgischen Klinik am Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg, für die nächsten zwei Jahre zur Verfügung, um die Steuerung der Blutgefäßneubildung in künstlichem Gewebe in vivo – also im lebenden Organismus – zu untersuchen.

Hauptantragsteller und Projektleiter Dr. Oliver Bleiziffer von der Plastisch- und Handchirurgischen Klinik ist zuversichtlich, dass diese Forschung einen Grundstein legen könnte, um ein zentrales Problem der regenerativen Medizin zu lösen: die mangelhafte Durchblutung von künstlichem Gewebe.


Abbildung 1: Die künstliche Gefäßschleife verbindet Arterie und Vene (daher AV-Loop) mit Hilfe eines Überbrückungsstücks aus einer natürlichen Vene. Der AV-Loop selbst ist eingebettet in eine Fibrinmatrix, in die die neu gebildeten Blutgefäße einwachsen sollen. Abbildung: Dr. Oliver Bleiziffer


Abbildung 2: Umschlossen sind Gefäßschleife und Matrix von einer Trennkammer aus Teflon, sodass das Gebilde nach der Implantation nur über die Blutgefäßschleife mit dem lebenden Organismus verbunden ist. Abbildung: Dr. Oliver Bleiziffer

„Es ist heutzutage kein Problem, bioartifizielle Gewebe in der Petrischale in Kultur zu nehmen. Das Knochen-, Haut- oder Muskelgewebe wird dort mit Nährlösung und Wachstumsfaktoren versorgt und gedeiht gut“, erklärt Bleiziffer. Doch künstliche Gewebe in klinisch relevantem Umfang in einen lebenden Organismus zu verpflanzen, stellt die „Gewebe-Ingenieure“ vor größte Herausforderungen. Wenn das neue Gewebe im Körper nicht durchblutet werden kann, stirbt es ab, und alles war umsonst. Voraussetzung für eine ausreichende Durchblutung des Gewebes ist die Durchdringung mit genügend Blutgefäßen und Kapillaren. Und genau hier setzt die Forschung der Erlanger Chirurgen an.

Durch die Anlage einer so genannten Arteriovenösen Gefäßschleife (AV-Loop) konnte in der Vergangenheit bereits die Ausbildung von Blutgefäßen in künstlichem Gewebe erfolgreich angeregt werden. „Das von uns weiterentwickelte Modell des AV-Loops ist in Erlangen seit Jahren etabliert“, informiert Mitantragsteller PD Dr. Ulrich Kneser. Die Gefäßschleife ist eingebettet in einer Matrix aus dem „Klebeprotein“ Fibrin, die dem künstlichen Gewebe Gestalt und Form geben wird. Die Fibrin-Matrix wiederum ist angereichert mit so genannten endothelialen Vorläuferzellen (engl. EPC), die bei der Gefäßbildung eine Schlüsselrolle spielen (Abbildung 1).

Umfasst werden Matrix und Gefäßschleife von einer verschließbaren Trennkammer aus Teflon, die - eingepflanzt in einen lebenden Organismus - über die beiden Enden des AV-Loops an den natürlichen Blutkreislauf angeschlossen sind. Das künstliche Gewebe wächst also abgekapselt in einer Art Bio-Reaktor und wird über das eine Schleifenende an eine Arterie angeschlossen und das andere an eine Vene – daher der Begriff „AV-Loop“ (Abbildung 2).

Die Forscher nehmen nun in ihrem Projekt die Rolle der erwähnten endothelialen Vorläuferzellen (EPC) bei der Gefäßneubildung in bioartifiziellem Gewebe genauer unter die Lupe. Diese Zellen stammen ursprünglich aus dem Knochenmark und zirkulieren im Blut. Als differenzierte Endothelzellen kleiden sie die Innenwände der Blutgefäße aus. Ihre Bedeutung für das „Tissue Engineering“ verdanken die EPCs ihrem Gefäßbildungspotential. Sowohl bei der Aussprossung aus einem bereits bestehenden Kapillarsystem (Angiogenese) als auch bei der Gefäßneubildung (Vaskulogenese) spielen Endotheliale Vorläuferzellen eine tragende Rolle. Und das besondere: Die Gefäßwand-Vorläuferzellen werden bei Mangeldurchblutung an den Ort des Sauerstoffmangels rekrutiert. Dort setzen sie wiederum Wachstumsfaktoren und Botenstoffe frei, die die Gefäßaussprossung auslösen. Sie differenzieren bei Sauerstoffunterversorgung aber auch zu reifen Endothelzellen und beteiligen sich so an der Neubildung von Gefäßen – sozusagen aus dem Nichts heraus.

Dr. Oliver Bleiziffer hat sich nun vorgenommen, durch die Transplantation von EPCs die Ausbildung von neuen Blutgefäßen zu modulieren. Diese EPCs können mit einem so genannten proangiogenen, also gefäßbildungsfördernden, Transgen versehen werden, um die Ausbildung eines Blutgefäßsystems zu forcieren. In den Vorarbeiten war es den Forschern bereits gelungen, ein wachstumshemmendes Transgen einzusetzen und so die Gefäßbildung zu stören.

Eine weitere forschungsleitende Frage dreht sich um die Rolle der Hypoxie als Stimulans für Gefäßbildungsprozesse. Diese Sauerstoffunterversorgung führt zur Expression eines speziellen Transkriptionsfaktors (Hypoxia Inducible Factor (HIF) – 1 alpha), der wiederum eine ganze Palette von gefäßbildungsfördernden Wachstumsfaktoren aktiviert. So versucht der Körper, Sauerstoffmangelzustände zu kompensieren. Durch gezielt ausgelöste Hypoxie soll die Blutgefäßneubildung im künstlichen Gewebe experimentell stimuliert werden.

Modernste Bildgebungs- und Analyseverfahren sollen schließlich Ausmaß und Dichte der Gefäßneubildung evaluieren. Zum Einsatz kommen dabei Fluoreszenzmikroskopie, Histochemie, Morphometrie, Gefäßausgüsse, Mikro-CT und nicht zuletzt die Elektronenmikroskopie.

Sollten die Erlanger Forscher von der Plastisch- und Handchirurgischen Klinik erfolgreich sein, wäre dies nicht nur ein bedeutender Beitrag zum Tissue Engineering. „Auch für die Krebsforschung könnten unsere Erkenntnisse hilfreich sein, da die Blutgefäßbildung nicht nur das gesunde Gewebe am Leben hält, sondern auch für das Tumorwachstum ganz entscheidend ist“, sagt Bleiziffer.

Die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), gegründet 1743, ist mit 33.500 Studierenden, 630 Professuren und rund 12.000 Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Und sie ist, wie aktuelle Erhebungen zeigen, eine der erfolgreichsten und forschungsstärksten. So liegt die FAU beispielsweise beim aktuellen Forschungsranking der Deutschen Forschungsgemeinschaft (DFG) auf Platz 8 und gehört damit in die Liga der deutschen Spitzenuniversitäten. Neben dem Exzellenzcluster „Engineering of Advanced Materials“ (EAM9 und der im Rahmen der Exzellenzinitiative eingerichteten Graduiertenschule „School of Advanced Optical Technologies“ (SAOT) werden an der FAU derzeit 31 koordinierte Programme von der DFG gefördert

Die Friedrich-Alexander-Universität bietet insgesamt 142 Studiengänge an, darunter sieben Bayerische Elite-Master-Studiengänge und über 30 mit dezidiert internationaler Ausrichtung. Keine andere Universität in Deutschland kann auf ein derart breit gefächertes und interdisziplinäres Studienangebot auf allen Qualifikationsstufen verweisen. Durch über 500 Hochschulpartnerschaften in 62 Ländern steht den Studierenden der FAU schon während des Studiums die ganze Welt offen.

Weitere Informationen für die Medien:

Dr. Oliver Bleiziffer
Tel.: 09131/85-33277
oliver.bleiziffer@uk-erlangen.de

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uk-erlangen.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationen in der Bionik gesucht!
18.01.2018 | VDI Verein Deutscher Ingenieure e. V.

nachricht Fraunhofer HHI erhält AIS Technology Innovation Award 2018 für 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie