Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stiftung fördert Chirurgen mit 183.000 Euro

11.01.2012
Über 180.000 Euro stellt die Else Kröner-Fresenius-Stiftung dem Forscherteam um Prof. Dr. Raymund E. Horch, Direktor der Plastisch- und Handchirurgischen Klinik am Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg, für die nächsten zwei Jahre zur Verfügung, um die Steuerung der Blutgefäßneubildung in künstlichem Gewebe in vivo – also im lebenden Organismus – zu untersuchen.

Hauptantragsteller und Projektleiter Dr. Oliver Bleiziffer von der Plastisch- und Handchirurgischen Klinik ist zuversichtlich, dass diese Forschung einen Grundstein legen könnte, um ein zentrales Problem der regenerativen Medizin zu lösen: die mangelhafte Durchblutung von künstlichem Gewebe.


Abbildung 1: Die künstliche Gefäßschleife verbindet Arterie und Vene (daher AV-Loop) mit Hilfe eines Überbrückungsstücks aus einer natürlichen Vene. Der AV-Loop selbst ist eingebettet in eine Fibrinmatrix, in die die neu gebildeten Blutgefäße einwachsen sollen. Abbildung: Dr. Oliver Bleiziffer


Abbildung 2: Umschlossen sind Gefäßschleife und Matrix von einer Trennkammer aus Teflon, sodass das Gebilde nach der Implantation nur über die Blutgefäßschleife mit dem lebenden Organismus verbunden ist. Abbildung: Dr. Oliver Bleiziffer

„Es ist heutzutage kein Problem, bioartifizielle Gewebe in der Petrischale in Kultur zu nehmen. Das Knochen-, Haut- oder Muskelgewebe wird dort mit Nährlösung und Wachstumsfaktoren versorgt und gedeiht gut“, erklärt Bleiziffer. Doch künstliche Gewebe in klinisch relevantem Umfang in einen lebenden Organismus zu verpflanzen, stellt die „Gewebe-Ingenieure“ vor größte Herausforderungen. Wenn das neue Gewebe im Körper nicht durchblutet werden kann, stirbt es ab, und alles war umsonst. Voraussetzung für eine ausreichende Durchblutung des Gewebes ist die Durchdringung mit genügend Blutgefäßen und Kapillaren. Und genau hier setzt die Forschung der Erlanger Chirurgen an.

Durch die Anlage einer so genannten Arteriovenösen Gefäßschleife (AV-Loop) konnte in der Vergangenheit bereits die Ausbildung von Blutgefäßen in künstlichem Gewebe erfolgreich angeregt werden. „Das von uns weiterentwickelte Modell des AV-Loops ist in Erlangen seit Jahren etabliert“, informiert Mitantragsteller PD Dr. Ulrich Kneser. Die Gefäßschleife ist eingebettet in einer Matrix aus dem „Klebeprotein“ Fibrin, die dem künstlichen Gewebe Gestalt und Form geben wird. Die Fibrin-Matrix wiederum ist angereichert mit so genannten endothelialen Vorläuferzellen (engl. EPC), die bei der Gefäßbildung eine Schlüsselrolle spielen (Abbildung 1).

Umfasst werden Matrix und Gefäßschleife von einer verschließbaren Trennkammer aus Teflon, die - eingepflanzt in einen lebenden Organismus - über die beiden Enden des AV-Loops an den natürlichen Blutkreislauf angeschlossen sind. Das künstliche Gewebe wächst also abgekapselt in einer Art Bio-Reaktor und wird über das eine Schleifenende an eine Arterie angeschlossen und das andere an eine Vene – daher der Begriff „AV-Loop“ (Abbildung 2).

Die Forscher nehmen nun in ihrem Projekt die Rolle der erwähnten endothelialen Vorläuferzellen (EPC) bei der Gefäßneubildung in bioartifiziellem Gewebe genauer unter die Lupe. Diese Zellen stammen ursprünglich aus dem Knochenmark und zirkulieren im Blut. Als differenzierte Endothelzellen kleiden sie die Innenwände der Blutgefäße aus. Ihre Bedeutung für das „Tissue Engineering“ verdanken die EPCs ihrem Gefäßbildungspotential. Sowohl bei der Aussprossung aus einem bereits bestehenden Kapillarsystem (Angiogenese) als auch bei der Gefäßneubildung (Vaskulogenese) spielen Endotheliale Vorläuferzellen eine tragende Rolle. Und das besondere: Die Gefäßwand-Vorläuferzellen werden bei Mangeldurchblutung an den Ort des Sauerstoffmangels rekrutiert. Dort setzen sie wiederum Wachstumsfaktoren und Botenstoffe frei, die die Gefäßaussprossung auslösen. Sie differenzieren bei Sauerstoffunterversorgung aber auch zu reifen Endothelzellen und beteiligen sich so an der Neubildung von Gefäßen – sozusagen aus dem Nichts heraus.

Dr. Oliver Bleiziffer hat sich nun vorgenommen, durch die Transplantation von EPCs die Ausbildung von neuen Blutgefäßen zu modulieren. Diese EPCs können mit einem so genannten proangiogenen, also gefäßbildungsfördernden, Transgen versehen werden, um die Ausbildung eines Blutgefäßsystems zu forcieren. In den Vorarbeiten war es den Forschern bereits gelungen, ein wachstumshemmendes Transgen einzusetzen und so die Gefäßbildung zu stören.

Eine weitere forschungsleitende Frage dreht sich um die Rolle der Hypoxie als Stimulans für Gefäßbildungsprozesse. Diese Sauerstoffunterversorgung führt zur Expression eines speziellen Transkriptionsfaktors (Hypoxia Inducible Factor (HIF) – 1 alpha), der wiederum eine ganze Palette von gefäßbildungsfördernden Wachstumsfaktoren aktiviert. So versucht der Körper, Sauerstoffmangelzustände zu kompensieren. Durch gezielt ausgelöste Hypoxie soll die Blutgefäßneubildung im künstlichen Gewebe experimentell stimuliert werden.

Modernste Bildgebungs- und Analyseverfahren sollen schließlich Ausmaß und Dichte der Gefäßneubildung evaluieren. Zum Einsatz kommen dabei Fluoreszenzmikroskopie, Histochemie, Morphometrie, Gefäßausgüsse, Mikro-CT und nicht zuletzt die Elektronenmikroskopie.

Sollten die Erlanger Forscher von der Plastisch- und Handchirurgischen Klinik erfolgreich sein, wäre dies nicht nur ein bedeutender Beitrag zum Tissue Engineering. „Auch für die Krebsforschung könnten unsere Erkenntnisse hilfreich sein, da die Blutgefäßbildung nicht nur das gesunde Gewebe am Leben hält, sondern auch für das Tumorwachstum ganz entscheidend ist“, sagt Bleiziffer.

Die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), gegründet 1743, ist mit 33.500 Studierenden, 630 Professuren und rund 12.000 Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Und sie ist, wie aktuelle Erhebungen zeigen, eine der erfolgreichsten und forschungsstärksten. So liegt die FAU beispielsweise beim aktuellen Forschungsranking der Deutschen Forschungsgemeinschaft (DFG) auf Platz 8 und gehört damit in die Liga der deutschen Spitzenuniversitäten. Neben dem Exzellenzcluster „Engineering of Advanced Materials“ (EAM9 und der im Rahmen der Exzellenzinitiative eingerichteten Graduiertenschule „School of Advanced Optical Technologies“ (SAOT) werden an der FAU derzeit 31 koordinierte Programme von der DFG gefördert

Die Friedrich-Alexander-Universität bietet insgesamt 142 Studiengänge an, darunter sieben Bayerische Elite-Master-Studiengänge und über 30 mit dezidiert internationaler Ausrichtung. Keine andere Universität in Deutschland kann auf ein derart breit gefächertes und interdisziplinäres Studienangebot auf allen Qualifikationsstufen verweisen. Durch über 500 Hochschulpartnerschaften in 62 Ländern steht den Studierenden der FAU schon während des Studiums die ganze Welt offen.

Weitere Informationen für die Medien:

Dr. Oliver Bleiziffer
Tel.: 09131/85-33277
oliver.bleiziffer@uk-erlangen.de

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uk-erlangen.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie
19.09.2017 | Paul-Martini-Stiftung (PMS)

nachricht EU fördert exzellente Nachwuchsforschung: Zehn Auszeichnungen gehen nach Nordrhein-Westfalen
15.09.2017 | Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie