Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Springer Award Gefäßmedizin

05.01.2011
Doktorand des UK Essen entwickelt neue Gefäßprotektionslösung

Dr. Timo Wille entwickelte im Rahmen seiner Doktorarbeit am Institut für Physiologische Chemie des Universitätsklinikums Essen eine neue Konservierungslösung für Gefäße und wurde dafür in Berlin mit dem „Springer Award Gefäßmedizin“ ausgezeichnet. Neuen Studien zufolge entsteht durch die kalte Lagerung von Zellen eine zusätzliche Schädigung, obwohl die Lagerung bei niedrigen Temperaturen Zellen und Gewebe vor lagerungs- und transportbedingten Schäden schützen sollte.

Anders als bisherige Lösungen schützt das neue Medium Gefäßtransplantate nachweislich vor diesen kältebedingten Schäden. Ohne nennenswerten Qualitätsverlust sind menschliche Gefäße in dieser Lösung nun bis zu vierzehn Tagen haltbar.

Erstmalig vergibt der Springer Verlag Medizin jetzt einen Preis für Nachwuchswissenschaftler aus dem Bereich der Gefäßmedizin. Er honoriert damit Forschungsarbeiten, die sich durch einen besonderen Praxisbezug auszeichnen. Dr. Wille führte seine Forschungsarbeiten zur Gefäßlagerung als Medizinstudent in der Arbeitsgruppe von Prof. Dr. Rauen durch und promovierte im Frühjahr dieses Jahres mit einer Arbeit zu oben genanntem Thema – mit der Bestnote „summa cum laude“. Unter dem Titel „Eine neue Lösung zur kalten Lagerung von Blutgefäßen“ ist eine Zusammenfassung seiner Forschungsarbeit nun in der Oktoberausgabe der Fachzeitschrift Gefäßchirurgie veröffentlicht worden. Im Original wurden diese Ergebnisse im renommierten englischsprachigen Journal of Vascular Surgery publiziert.

Zum Hintergrund:
Bislang gingen Forscher davon aus, dass es während der Konservierung zu einer Störung des zellulären Ionengleichgewichtes kommt, wobei insbesondere eine Natriumansammlung dazu führen sollte, dass die Zellen anschwellen und letztlich absterben. Erst neue Studien haben gezeigt, dass die Zellschädigung jedoch auf eine kälteinduzierte Bildung freier Radikale zurückzuführen ist. Isoliertes Gewebe wird üblicherweise bei Temperaturen zwischen 0° und 4 °C aufbewahrt, um den Zersetzungsprozess zu verlangsamen. In der Kälte werden jedoch gleichzeitig in den Zellen Eisenionen freigesetzt, die eine Bildung hochreaktiver Radikale initiieren. Diese Radikale greifen dann unter anderem Zellorganellen an, deren Schädigung letztendlich zum Zelltod führt. Weitere Zellen sterben ab sobald das Gewebe wieder auf Raumtemperatur erwärmt wird, was sich bereits nach wenigen Stunden der Lagerung nachweisen lässt. Nach wenigen Tagen sind die Zellen massiv geschädigt und eignen sich nicht mehr zur Transplantation. Die bisher eingesetzten Konservierungslösungen schädigen das Gewebe teilweise sogar noch stärker. Mit der neuen Lösung gelingt es dagegen erstmalig, diesem Effekt entgegen zu wirken. Ein sogenanntes Eisenchelator-Molekül bindet dabei die frei gewordenen Eisenionen und schützt somit die Zellen.

Kristina Gronwald | idw
Weitere Informationen:
http://www.uniklinikum-essen.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro
24.03.2017 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro
24.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie