Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spot an für Gehirnforscher: Nervenzellen mit Licht steuern

04.11.2015

100.000 Euro Heinrich-Wieland-Preis für Gero Miesenböck

Gero Miesenböck hat als erster einen lichtgesteuerten An-Aus-Schalter in Gehirnzellen eingebaut. Mit der wegweisenden Methode können Forscher Nervenzellen gezielt an- und ausschalten und beobachten, wie sich dabei das Verhalten z. B. einer Fruchtfliege oder einer Maus ändert. Sie lernen so Stück für Stück, welche Schaltkreise im Gehirn welches Verhalten beeinflussen und was bei Krankheiten schief läuft. Für die als „Durchbruch des Jahrzehnts“ betitelte Methode erhält Gero Miesenböck, Professor an der Universität Oxford, am 6. November in München den mit 100.000 Euro dotierten Heinrich-Wieland-Preis der Boehringer Ingelheim Stiftung.


Im abgebildeten Fruchtfliegenhirn sind die Magenta-gefärbten Zellen genetisch so verändert, dass sie auf einen Lichtimpuls, hier auch Magenta dargestellt regieren.

A. Claridge-Chang, R. Roorda and G. Miesenböck / Universität Oxford

Die als Optogenetik bezeichnete Methode (Optik = die Lehre vom Licht und Genetik = die Lehre der Vererbung) hat die Erforschung des Gehirns mit Siebenmeilenstiefeln voranschreiten lassen. Sie hat uns gezeigt, welche Nervenzellen uns aufwecken. Sie half zu klären, wie Kokain und andere Drogen das Belohnungssystem im Gehirn umprogrammieren.

Sie hat verlorene Erinnerungen wieder hergestellt und so bewiesen, dass bei manchen Formen von Gedächtnisschwund nicht die Erinnerung verloren, sondern nur ihr Abruf gestört ist. Sie hat gezeigt, dass auch im weiblichen Gehirn die Grundlagen für Verhaltensweisen schlummern, die oft als „typisch männlich“ bezeichnet werden. Und sie hat den unsicheren Gang von Mäusen mit Parkinson wieder in sichere Schritte verwandelt. Bereits in diesem Jahr soll der erste Versuch erfolgen, blinden Menschen mit Hilfe der Optogenetik ihre Sehkraft zurückzugeben.

Um das Leben zu meistern, schalten sich im Gehirn von Tieren – und Menschen – unterschiedliche Typen von Nervenzellen zusammen, um gemeinsam Teilaufgaben zu bewältigen. Diese Schaltkreise vergleichen zum Beispiel eingehende Signale, messen Zeit oder speichern Erinnerungen. Arbeiten mehrere solcher Schaltkreise zusammen, können sie größere Aufgaben lösen, z.B. entscheiden, ob wir den roten Pullover kaufen oder für den Urlaub sparen.

Die Funktion dieser Schaltkreise kann man dank Gero Miesenböcks Grundkonzept der Optogenetik präzise im intakten Gehirn untersuchen. Mit ihrer Hilfe können die beteiligten Zelltypen gezielt nacheinander an- und wieder abgeschaltet werden – und das fast gedankenschnell.

Er weiß es noch genau. Am späten Nachmittag des 12. Juni 1999 hatte er die entscheidende Idee, die zur Optogenetik führte. Er veränderte Nervenzellen genetisch so, dass sie Proteine produzierten, deren Aktivität über Licht steuerbar ist. Dadurch reagierten auch die Nervenzellen auf Licht. Allerdings musste er dafür sorgen, dass nur die Zellen die Schalterproteine produzierten, die er untersuchen wollte.

Dazu verknüpfte er die Gene für die Schalterproteine mit Genabschnitten, die nur in den gewünschten Zelltypen aktiv waren. So reagierten die Wunschzellen auf das Lichtsignal, alle anderen Zellen aber nicht. „Das Konzept, lichtaktivierbare Proteine zelltypspezifisch einzubauen und damit bestimmte Nervenzellen zuverlässig, einfach, präzise und schnell an- und abschalten zu können, ist Miesenböcks Verdienst. Dafür verleihen wir ihm den Heinrich-Wieland-Preis 2015“, sagt Professor Dr. Wolfgang Baumeister, Vorsitzender des wissenschaftlichen Auswahlgremiums für den Preis.

„Ich wusste seit unseren ersten Erfolgen, dass diese Methode uns ungeahnte Einblicke ins Gehirn geben kann. Aber wie schnell andere Forscher sie übernommen und weiterentwickelt haben, beeindruckt mich“, so Gero Miesenböck. „Inzwischen arbeitet fast jede zweite Forschergruppe in der Neurobiologie damit. Sie erforschen, wie das Gehirn Entscheidungen trifft, warum wir depressiv werden oder was unseren Appetit bestimmt.“

Zuvor konnten Forscher entweder nur eine Zelle oder aber gleich alle Zellen und Zelltypen in einem Bereich des Gehirns durch eingepflanzte Elektroden steuern. Die Optogenetik erlaubt erstmals, einen oder mehrere Zelltypen gezielt zu untersuchen, selbst wenn die Zellen über das ganze Gehirn verteilt sind. Ein weiterer Vorteil ist, dass sich Lichtsignale so schnell an- und ausknipsen lassen, wie Nervenzellen arbeiten. Im Gegensatz zu anderen Methoden, kann man mit dieser Methode direkt die Schaltkreise im Gehirn und damit das Verhalten von Tieren beeinflussen, wie Miesenböck 2005 erstmals zeigte. Seit ihrem ersten Einsatz in Zellkultur im Jahr 2002 haben Miesenböck und andere Forscher die Optogenetik weiterentwickelt und verbessert. Mittlerweile verwenden Wissenschaftler sogar Schalterproteine, die jeweils auf andere Lichtfarben reagieren, so dass sie gleichzeitig mehrere Zelltypen – und damit ihr Zusammenspiel – untersuchen können. (Mehr zur Methode siehe Infokasten Optogenetik)

Die gemeinnützige Boehringer Ingelheim Stiftung lädt anlässlich der Preisverleihung zu einem wissenschaftlichen Symposium über Optogenetik ein. Neben einem Vortrag von Professor Gero Miesenböck halten auch Professor Christian Lüscher, Professor Botond Roska und Professor Arthur Konnerth Vorträge zu Optogenetik und Sucht, Alzheimer und der Heilung von Sehstörungen. Alle drei sind international ausgewiesene Wissenschaftler auf ihrem Gebiet. Die Laudatio hält der Nobelpreisträger Professor Bert Sakmann. Das Programm des englischsprachigen Symposiums am 6. November in Schloss Nymphenburg in München finden Sie anbei.

Pressevertreter sind herzlich eingeladen, bitte wenden Sie sich an Kirsten Achenbach unter 06131-2750816 oder hwp@bistiftung.de. Gerne ermöglichen wir Ihnen auch ein Interview mit dem Preisträger oder den Vortragenden.

Gero Miesenböck – der Preisträger

Gero Miesenböck studierte Medizin an der Universität Innsbruck in Österreich. Im Anschluss arbeitete er in den USA zunächst als Postdoktorand am renommierten Memorial Sloan-Kettering Krebszentrum in New York und dann als Fakultätsmitglied an der Cornell und der Yale Universität. Im Jahr 2007 wurde er Waynflete Professor für Physiologie an der Universität Oxford, England. Seit 2011 leitet er das im selben Jahr gegründete Zentrum für Neuronale Schaltkreise und Verhalten der Universität Oxford.

Optogenetik – die Methode

Um Nervenzellen gezielt mit Hilfe von Licht an- oder ausschalten zu können, übertrug Gero Miesenböck in seinen ersten Experimenten noch drei verschiedene Gene aus der Fruchtfliege in die Gehirnzellen von Mäusen. So revolutionär das Konzept war, so war es doch zunächst aufwendig und die Zellen reagierten erst nach mehreren Sekunden auf das Signal. Doch innerhalb weniger Jahre fanden Miesenböck und andere Forscher Möglichkeiten, Nervenzellen mit nur einem zusätzlichen Gen im Millisekunden-Takt an- und auszuschalten. Heute nutzen Forscher sogenannte Kanalrhodopsine aus Einzellern, Pilzen und Algen als Schalterproteine. Wie der Name andeutet, bilden sie Kanäle in der Zellhülle, die auf Licht reagieren. Trotz der primitiven Herkunft bauen erstaunlicherweise selbst Säugetierzellen diese Proteine problemlos in ihre Membranhülle ein. Werden die Kanäle durch Licht aktiviert, strömen, je nach Art des Kanals, Ionen in die Zelle hinein oder aus ihr heraus. Dieser Ionenstrom lässt dann die Nervenzelle feuern oder verstummen. So können die Forscher die veränderten Nervenzellen direkt über einen Lichtimpuls von außen steuern.

Heinrich-Wieland-Preis

Der Heinrich-Wieland-Preis honoriert internationale Spitzenforschung zu biologisch aktiven Substanzen und Systemen in den Bereichen Chemie, Biochemie und Physiologie sowie ihrer klinischen Bedeutung. Der Preis ist nach dem deutschen Nobelpreisträger Heinrich Otto Wieland (1877–1957) benannt und wird seit 1964 jährlich vergeben. Ein wissenschaftliches Kuratorium wählt die Preisträger aus, zu denen auch vier spätere Nobelpreisträger gehören ( www.heinrich-wieland-prize.de ).

Die Boehringer Ingelheim Stiftung (BIS) dotiert den Preis mit 100.000 Euro. Sie fördert u. a. das Institut für Molekulare Biologie (IMB) mit 100 Millionen Euro und die Lebenswissenschaften an der Universität Mainz mit weiteren 50 Millionen Euro. Die BIS ist eine eigenständige und gemeinnützige Stiftung zur Förderung der medizinischen, biologischen, chemischen und pharmazeutischen Wissenschaft (www.bistiftung.de ).

Hochauflösendes Bildmaterial ist vorhanden.

Ansprechpartner:
Kirsten Achenbach
Boehringer Ingelheim Stiftung
Schusterstr. 46-48
55116 Mainz
Tel: 06131-27 50 816
Mail: kirsten.achenbach@bifonds.de

Weitere Informationen:

http://www.heinrich-wieland-prize.de - englische Seite zum Preis
http://www.bistiftung.de - Webseite der gemeinnützigen Boehringer Ingelheim Stiftung

Kirsten Achenbach | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Sechs innovative Projekte sind im Rennen um den begehrten European Health Award 2017
17.08.2017 | European Health Forum Gastein

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie