Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Simulationsmethoden für weiche Materie gefördert

21.05.2014

Max-Planck-Institut für Polymerforschung an Sonderforschungsbereich in Kooperation mit den Universitäten Mainz und Darmstadt beteiligt.

Die Deutsche Forschungsgemeinschaft (DFG) hat die Einrichtung eines neuen Sonderforschungsbereichs (SFB) unter Beteiligung des Max-Planck-Instituts für Polymerforschung Mainz (MPI-P) bewilligt.

Sie folgt damit einem gemeinsamen Antrag des MPI-P, der Johannes-Gutenberg-Universität Mainz (JGU) als Sprecherinstitution sowie der Technischen Universität Darmstadt (TU Darmstadt) und fördert das Forschungsfeld zunächst für die kommenden vier Jahre mit circa sieben Millionen Euro.

Der neue SFB/Transregio (TRR) „Multiskalen-Simulationsmethoden für Systeme der weichen Materie“ befasst sich mit der computergestützten Simulation von Prozessen in weicher Materie und ihrer Eigenschaften.

„Die Einwerbung des neuen DFG-Sonderforschungsbereichs/Transregio unterstreicht die gute Zusammenarbeit zwischen Max-Planck-Institut für Polymerforschung, Johannes Gutenberg-Universität und TU Darmstadt“, so Doris Ahnen, Wissenschaftsministerin des Landes Rheinland-Pfalz.

Fundamentale Erkenntnisse für die Materialentwicklung liefern

Multiskalenmodellierung ist ein zentrales Thema der Materialwissenschaften. Eine wichtige Klasse ist dabei weiche Materie, die von einfachen Kunststoffen bis zu komplexen biomolekularen Systemen oder Materialien für die organische Elektronik reicht. Ihre Eigenschaften werden durch ein subtiles Wechselspiel von Energie und Entropie bestimmt. Kleine Änderungen der molekularen Wechselwirkungen können große Änderungen der makroskopischen Eigenschaften eines Systems zur Folge haben.

Der SFB/TRR 146 „Multiskalen-Simulationsmethoden für Systeme der weichen Materie“ will einige der drängendsten Probleme der Multiskalenmodellierung in Zusammenarbeit von Physikern, Chemikern, angewandten Mathematikern und Informatikern angehen. Ziel ist es, durch die Entwicklung neuer Simulations- und Analysetechniken auch Simulationen zur Struktur und Dynamik von komplexeren Systemen der „wirklichen Welt“ zu ermöglichen, wie zum Beispiel vielkomponentige Materialien oder auch solche, die durch Nichtgleichgewichtsprozesse bestimmt werden.

Der Arbeitskreis von Max-Planck-Direktor Kurt Kremer widmet sich der theoretischen, insbesondere computergestützten Erforschung der physikalischen und chemischen Merkmale weich kondensierter Materie. Die große Bandbreite der Untersuchungsobjekte und –methoden spiegelt sich auch in der umfangreichen Beteiligung am SFB/TRR 146 wider: An insgesamt fünf Teilprojekten, die den Bogen von der theoretischen Physik und Chemie über die numerische Mathematik bis hin zur Softwareentwicklung spannen, sind Kurt Kremer und seine Mitarbeiter beteiligt.

„Die erfolgreiche Bewilligung durch die DFG zeigt, welch hohe Bedeutung der theoretischen, computerbasierten Forschung zukommt. Wir können nun unsere breitgefächerte Kompetenz einbringen und die langjährige Zusammenarbeit mit unseren Partner an der TU Darmstadt und an der JGU Mainz intensivieren“, sagt Kremer.

Sonderforschungsbereiche sind langfristige DFG-Projekte in der Grundlagenforschung, wobei SFB/TRR von mehreren Hochschulen gemeinsam beantragt werden. Der Bewilligungsausschuss der DFG hatte auf seiner Frühjahrssitzung beschlossen, 13 neue Sonderforschungsbereiche einzurichten. Vier davon sind SFB/TRR-Initiativen. Die wiederholt erfolgreiche Einwerbung setzt die Erfolgsgeschichte des MPI-P bei Bewerbungen um Sonderforschungsbereiche und ähnlich koordinierte Projekte fort.

Max-Planck-Institut für Polymerforschung
Das 1984 gegründete Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf so genannte weiche Materie und makromolekulare Materialien ist das Max-Planck-Institut für Polymerforschung mit seiner Forschungsausrichtung weltweit einzigartig. Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland arbeiten im Rahmen der Grundlagenforschung an der Herstellung und Charakterisierung von Polymeren und der Untersuchung ihrer physikalischen und chemischen Eigenschaften. Anfang 2014 sind insgesamt 518 Personen am MPI-P beschäftigt: Die Belegschaft setzte sich aus 121 Wissenschaftlern, 147 Doktoranden und Diplomanden, 76 Stipendiaten und 174 technischen und Verwaltungsangestellten sowie Hilfskräften zusammen.

Weitere Informationen:

http://www.mpip-mainz.mpg.de - Website des Max-Planck-Instituts für Polymerforschung

Stephan Imhof | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

nachricht Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie
19.09.2017 | Paul-Martini-Stiftung (PMS)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften