Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rund zwei Millionen Euro für Forschung an neuartigen Diamantsensoren

29.01.2015

Mit rund zwei Millionen Euro fördert das Bundesforschungsministerium (BMBF) eine neue Nachwuchsgruppe in der Physik an der Saar-Uni.

Die Nachwuchsgruppenleiterin Dr. Elke Neu, die ab Februar an der Saar-Uni arbeiten wird, und ihr Team erforschen mit quantenphysikalischen Methoden neuartige, bis in den Nanometerbereich auflösende Abbildungsverfahren. Die Wissenschaftler erwarten vor allem in den Material- und Lebenswissenschaften einen großen Nutzen dieser Methoden.


Solche winzigen Diamant-Nanodrähte wollen die Forscher um Elke Neu nutzen, um mithilfe der Rastersondenmikroskopie neuartige Abbildungsverfahren zu entwickeln.

Foto: Universität Basel

Für diese Idee ist Elke Neu im BMBF-Nachwuchswettbewerb „NanoMatFutur“ ausgezeichnet worden und erhält in den nächsten vier Jahren eine Förderung im Rahmenprogramm „Werkstoffinnovationen für Industrie und Gesellschaft –WING“.

Großes entsteht immer im Kleinen: Dieser Slogan der saarländischen Imagekampagne gilt an der Saar-Uni nicht nur im übertragenen Sinne, sondern buchstäblich. Hochauflösende Abbildungen mit einer Genauigkeit im Nanometerbereich (Milliardstel Meter) ermöglichen es, physikalische und biologische Systeme besser zu verstehen und neue Technologien zu erforschen.

Gelingt es, Magnetfelder auf der Nanoskala zu messen und abzubilden, so lassen sich Ströme in Nanostrukturen oder in biologischen Systemen präzise untersuchen. Anwendung finden diese Abbildungsverfahren beispielsweise in der Entwicklung neuer magnetischer Materialien und der Untersuchung elektrischer Ströme, die entstehen, wenn Zellen über den Austausch geladener Teilchen (Ionen) durch spezielle Poren (Ionenkanäle) miteinander kommunizieren.

Ionenkanäle zu erforschen, ist essentiell, da ihre Fehlfunktion Erkrankungen wie zum Beispiel Herzrhythmusstörungen hervorrufen kann. Durch Untersuchungen von Zellmembranen können die hochauflösenden Verfahren auch zum Verständnis der Wirkungsmechanismen vieler pharmazeutischer Wirkstoffe beitragen.

Für die hochauflösenden Abbildungsverfahren benutzen die Forscher in der Nachwuchsgruppe von Elke Neu, die am 1. Februar aus Basel an die Saar-Uni wechselt, Diamanten, in die gezielt einzelne Verunreinigungsatome eingebaut werden. Dabei ersetzt zum Beispiel ein künstlich eingebrachtes Stickstoffatom ein Kohlenstoffatom im atomaren Gitter eines Diamanten.

Zusammen mit einer benachbarten Leerstelle im Gitter bildet diese „Verschmutzung“ mit einem fremden Atom ein so genanntes Farbzentrum. Dessen physikalische Eigenschaften erlauben es, sowohl kleinste Magnetfelder zu messen als auch die Anwesenheit einzelner Moleküle zu erspüren. Die Farbzentren sind dabei nicht viel grösser als Atome und ermöglichen daher als kleinstmögliche Sensoren sehr hochauflösende Abbildungen.

Der Clou von Frau Neus Forschungsidee im Projekt „Multifunktionale Diamant Nano-Rastersonden für die Lebenswissenschaften (DiaNanoRa)” ist es nun, die „Feinfühligkeit“ und atomare Ausdehnung der Farbzentren mit der bekannten Technologie der Rastersondenmikroskopie zu kombinieren. Bei einer Rastersondenabbildung bewegt sich eine Sonde nur wenige Milliardstel Meter über dem zu untersuchenden Objekt und tastet die Oberfläche ab. Neu ist, dass die Diamant-Sonden nicht-invasiv sind, ohne Kühlung in der normalen Lebensumgebung für Zellen funktionieren und somit bestens geeignet sind, um biologische Proben zu untersuchen.

Das Projekt DiaNanoRa (BMBF Förderkennzeichen 13N13547) an der Schnittstelle zwischen Physik, Materialwissenschaft und Lebenswissenschaft ergänzt ideal die Schwerpunkte naturwissenschaftlicher Forschung an der Saar-Uni. So stellt der Saarbrücker Professor für Quantenoptik Christoph Becher fest: „Elke Neu setzt für ihre Arbeit einzelne Quantensysteme, also einzelne Atome ein; dies ist ein perfektes Beispiel für die Anwendung von Quantentechnologien, die einen der Schwerpunkte der Saarbrücker Physik bilden. Frau Neus Projekt zeigt in vorbildlicher Weise die Quervernetzung der Quantentechnologien mit den universitären Schwerpunkten Lebenswissenschaften und Materialforschung.“ Das Projekt hat neben der weiteren Erforschung der Messtechnik auch erste Schritte hin zur Kommerzialisierung in Zusammenarbeit mit zwei mittelständischen deutschen Unternehmen zum Ziel.

Weitere Informationen:

Dr. Elke Neu, Universität Basel
E-Mail: elke.neu@unibas.ch
Tel.: +41 (0)61 267 3760

Prof. Dr. Christoph Becher, Universität des Saarlandes
E-Mail: christoph.becher@physik.uni-saarland.de
Tel.: (0681) 3022466

Thorsten Mohr | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie