Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantum gas in a laser cage: The Körber European Science Prize 2013 goes to Immanuel Bloch

13.06.2013
The German physicist is to be honoured for his groundbreaking work in the field of quantum simulation with ultracold atoms.

In his experiments, Bloch creates microscopic »light crystals« from laser beams in whose optical lattices ultracold atoms are trapped. This quantum simulator serves as a model for the examination of fundamental quantum mechanics processes in materials such as metals.

The Körber Prize 2013, endowed with 750,000 euros, goes to Prof. Dr. Immanuel Bloch. The German physicist is to receive the award for his work which has opened up a new area of research at the interface between quantum optics, quantum information processing and solid state physics. The Körber Prize honours scientists working on particularly innovative research projects.

Having studied physics in Bonn and conducted research at Stanford University, Immanuel Bloch obtained his PhD at the Ludwig Maximilian University of Munich (LMU) working under Theodor Hänsch, who went on to win the Nobel Prize in Physics. Since 2008 he has been the Scientific Director of the Max Planck Institute of Quantum Optics and Professor of Quantum Optics at LMU since 2009.

The 40-year-old prize-winner concerns himself above all with the investigation of ultracold »quantum gases« in artificial crystals made of light. Such systems serve among other things as greatly magnified laboratory simulations of solids – the term used by physicists to describe solid materials such as metals or ceramics. Their hardness results from their crystalline lattice structure.

Physicists are interested in how well solids conduct electricity and heat and which processes are involved. When electricity flows through a solid, free electrons pass through the otherwise rigid crystalline structure. In metals, the electrons can move unhindered to a large extent. In non-conductive materials such as ceramics – so-called insulators – the electrons are trapped immovably in the crystalline lattice.

Bloch mimics these processes in technically complex experiments, the core of which is a small vacuum chamber. Inside the chamber, laser beams create an artificial crystal with a lattice consisting of light. The researchers trap ultracold atoms which imitate, for example, highly interactive electrons in these »light cages«. As the gaps between the atoms are 10,000 times larger in the light lattice than in real materials, microscopic physical processes can be observed in a unique way.

A further special feature is the fact that in the artificial crystal – unlike in nature – the parameters can be altered almost at random. For example, if the researchers reduce the intensity of the laser beams which are retaining the atoms in the optical cages, at some point the atoms will free themselves from their captivity. In this way, a simulated non-conductor becomes a conductor. If the laser beams come from a different direction, new crystalline structures can be created. In addition, the interaction between the atoms can be tuned via an external magnetic field.

Unlike the world of traditional physics, quantum particles such as electrons are capable of assuming several states simultaneously. Making these states visible and characterising them precisely helps to better understand the fundamental structure of matter.

Using Bloch's quantum simulator, theoretical models of the structure of solids can be monitored accurately, among other things. Furthermore, the device facilitates experiments under extreme, previously unattainable conditions in the laboratory. The insights thus gained can help in the future to develop materials with tailored quantum properties – such as new superconductors which can conduct electricity without loss. In the distant future, Bloch also hopes to be able to use his simulator as a quantum computer – against which even super-fast conventional computers would not stand a chance: »To calculate the interactions in a system comprising 300 quantum particles,« explains the prize-winner, »a conventional computer would require more memory cells than there are protons in the visible universe.«

Immanuel Bloch has already received numerous renowned science prizes. The Körber European Science Prize will be presented to him on September 6th in the Hamburg City Hall.

Andrea Bayerlein | idw
Weitere Informationen:
http://www.koerber-preis.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro
24.03.2017 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro
24.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise