Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prothesen mit Nervenimpulsen steuern - Innovationspreis für Nerv-Computer-Kopplung

24.10.2008
Patienten, die wesentliche Teile einer Hand, eines Arms oder eines Beins verloren haben, sollen eines Tages ihre Prothese mit Nervensignalen besser steuern können.

Eine bundesweite Forschergruppe hat dazu ein viel versprechendes Projekt entwickelt, das gestern mit dem Innovationspreis für Medizintechnik des Bundesforschungsministeriums ausgezeichnet wurde.

Beim Verlust einer Hand können Patienten schon heute ihre Prothesen mit elektrischen Signalen steuern, die aus ihren Unterarmmuskeln abgeleitet werden. Was aber, wenn auch diese Muskeln nicht mehr vorhanden sind, der Unterarm fehlt?

Renommierte Forschergruppen versuchen weltweit, ein "brain-computer-interface" zu schaffen. Die Betroffenen sollen an eine Bewegung denken, Elektroden auf dem Kopf erfassen die Hirnströme und ein Computer versucht "den Gedanken zu lesen".

Er filtert die passenden Signale aus dem "Rauschen" der Gehirnströme heraus und veranlasst die entsprechende Bewegung der Hand. Ein aufwändiges, fehleranfälliges und langsames Verfahren. Zwischen Gedanken und Bewegung vergehen etwa 10 Sekunden.

"Es liegt doch nahe, die noch vorhandenen Nerven als Impulsgeber für Bewegungen zu verwenden", erläutert Dr. Schulte-Mattler von der der Universität Regensburg. Dabei wird versucht, die Nervenenden mit einer speziellen Folie zu umwickeln, ihre elektrischen Impulse abzuleiten und damit eine Prothese zu steuern. In der Folie befinden sich Leiterbahnen und ein Mikrochip. Die Nervenenden (Axone) bekommen elektrischen Kontakt mit den Leiterbahnen, und der Chip kann die entsprechenden Informationen nach außen senden.

Dazu wird eine RFID-ähnliche Technik verwendet. Dabei erhält der Chip von einer Induktionsspule von außen Energie und sendet seine Informationen an die Prothese. "Was die einzelnen Nervensignale bedeuten, verstehen wir nämlich - im Vergleich zu Hirnstrommustern - recht gut", so Schulte-Mattler. Die RFID-Technik ist millionenfach im Einsatz, den meisten bekannt aus elektronischen Preisetiketten.

Aber der Teufel steckt im Detail. Unter welchen Bedingungen wachsen die Axone am besten in das körperfremde Material? Ist der Kontakt dauerhaft, oder kommt es nach einiger Zeit zu einer Abstoßungsreaktion? Wie verhält sich die Folie mit ihren Leiterbahnen und dem Chip im Gewebe? Diese und ähnliche Fragen soll ein Forschungsprojekt in den nächsten zwei Jahren klären und so die elementare Basis für ein "nerve-computer-interface" entwickeln helfen.

Für die technischen Fragen hierzu kann das Team des Fraunhofer IZM bereits auf mehrjährige Erfahrung zurückgreifen. Zusammen mit dem Fraunhofer IBMT ist unter Beteiligung der Fa. Otto Bock bereits in den USA mit der University of Utah, Salt Lake City ein "Nervenstecker" zur drahtlosen Übertragung von Steuerimpulsen an "intelligente" Prothesen entwickelt worden.

"Ein solches Interface lässt sich zwar auch direkt verdrahten", erklärt der Prof. Michael Töpper. Dann aber würden Drähte von den Nerven aus dem Inneren des Armstumpfes oder sogar aus dem Inneren des Gehirns an die Oberfläche des Gewebes zu einer Art Stecker führen, was jedoch ein erhebliches Infektionsrisiko darstellt. Daher entwickeln die Berliner Forscher ein drahtloses Array. Hundert nadelfeine Sensorspitzen werden dabei in das Gewebe gedrückt. Sendet nun eine Nervenzelle ein Signal in Form eines winzigen elektrischen Stromimpulses, können die Nadelspitzen diesen Stromfluss aufnehmen. Dazu benötigen sie einen direkten Kontakt zum sendenden Nerv im Gehirn oder am Nervenstrang.

Der Rest ist Mikroelektronik vom Feinsten: Die Spitzen leiten das Signal an einen winzigen Chip weiter. Dieser verstärkt das schwache Signal und sendet es nach außen. "Im Rahmen des ausgezeichneten Projekts werden die Sensorspitzen nun durch nanostrukturierte Elektroden ersetzt, wodurch das Interface noch winziger gestaltet werden kann", so Töpper. Gerade das mikroelektronische Packaging ist eine der Schlüsselkomponenten des Projekts, ermöglicht sie doch durch Verwendung spezieller Materialien wie Parylen überhaupt erst die Biokompatibilität des Gesamtsystems. "Die Integration von Mikroelektronik-Technologien z.B. auf dehnbaren Schaltungsträgern und die Mikrosystemtechnik werden weitere Potenziale für zukünftige Entwicklungen der Medizintechnik eröffnen."

Zum Verbund unter der Federführung der Neurologischen Uni-Klinik gehören das Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM in Berlin (Dr. Stefan Fiedler), die Technische Universität Berlin mit ihrem Forschungsschwerpunkt Mikroperipherik (Dr. Thomas Löher) und die Universität Rostock, Lehrstuhl für Biophysik (Institut für Biowissenschaften, Prof. Dr. Jan Gimsa). Prof. Dr. Hans Wolf vom Institut für Medizinische Mikrobiologie an der Universität Regensburg brachte die richtigen Leute zum richtigen Zeitpunkt in Kontakt.

Georg Weigelt | Fraunhofer Gesellschaft
Weitere Informationen:
http://www2.izm.fhg.de/Bilder/gehirn_computer_interface.zip
http://www.innovationsforum-medizintechnik.de/programm/wettbewerb.php
http://www.izm.fhg.de/news_events/news/index.jsp

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Über 1,6 Millionen Euro für Forschung im Bereich Innovative Materialien und Werkstofftechnologie
17.05.2017 | Hochschule Osnabrück

nachricht MHH-Forscher beleben Narbengewebe in der Leber wieder
16.05.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie