Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prothesen mit Nervenimpulsen steuern - Innovationspreis für Nerv-Computer-Kopplung

24.10.2008
Patienten, die wesentliche Teile einer Hand, eines Arms oder eines Beins verloren haben, sollen eines Tages ihre Prothese mit Nervensignalen besser steuern können.

Eine bundesweite Forschergruppe hat dazu ein viel versprechendes Projekt entwickelt, das gestern mit dem Innovationspreis für Medizintechnik des Bundesforschungsministeriums ausgezeichnet wurde.

Beim Verlust einer Hand können Patienten schon heute ihre Prothesen mit elektrischen Signalen steuern, die aus ihren Unterarmmuskeln abgeleitet werden. Was aber, wenn auch diese Muskeln nicht mehr vorhanden sind, der Unterarm fehlt?

Renommierte Forschergruppen versuchen weltweit, ein "brain-computer-interface" zu schaffen. Die Betroffenen sollen an eine Bewegung denken, Elektroden auf dem Kopf erfassen die Hirnströme und ein Computer versucht "den Gedanken zu lesen".

Er filtert die passenden Signale aus dem "Rauschen" der Gehirnströme heraus und veranlasst die entsprechende Bewegung der Hand. Ein aufwändiges, fehleranfälliges und langsames Verfahren. Zwischen Gedanken und Bewegung vergehen etwa 10 Sekunden.

"Es liegt doch nahe, die noch vorhandenen Nerven als Impulsgeber für Bewegungen zu verwenden", erläutert Dr. Schulte-Mattler von der der Universität Regensburg. Dabei wird versucht, die Nervenenden mit einer speziellen Folie zu umwickeln, ihre elektrischen Impulse abzuleiten und damit eine Prothese zu steuern. In der Folie befinden sich Leiterbahnen und ein Mikrochip. Die Nervenenden (Axone) bekommen elektrischen Kontakt mit den Leiterbahnen, und der Chip kann die entsprechenden Informationen nach außen senden.

Dazu wird eine RFID-ähnliche Technik verwendet. Dabei erhält der Chip von einer Induktionsspule von außen Energie und sendet seine Informationen an die Prothese. "Was die einzelnen Nervensignale bedeuten, verstehen wir nämlich - im Vergleich zu Hirnstrommustern - recht gut", so Schulte-Mattler. Die RFID-Technik ist millionenfach im Einsatz, den meisten bekannt aus elektronischen Preisetiketten.

Aber der Teufel steckt im Detail. Unter welchen Bedingungen wachsen die Axone am besten in das körperfremde Material? Ist der Kontakt dauerhaft, oder kommt es nach einiger Zeit zu einer Abstoßungsreaktion? Wie verhält sich die Folie mit ihren Leiterbahnen und dem Chip im Gewebe? Diese und ähnliche Fragen soll ein Forschungsprojekt in den nächsten zwei Jahren klären und so die elementare Basis für ein "nerve-computer-interface" entwickeln helfen.

Für die technischen Fragen hierzu kann das Team des Fraunhofer IZM bereits auf mehrjährige Erfahrung zurückgreifen. Zusammen mit dem Fraunhofer IBMT ist unter Beteiligung der Fa. Otto Bock bereits in den USA mit der University of Utah, Salt Lake City ein "Nervenstecker" zur drahtlosen Übertragung von Steuerimpulsen an "intelligente" Prothesen entwickelt worden.

"Ein solches Interface lässt sich zwar auch direkt verdrahten", erklärt der Prof. Michael Töpper. Dann aber würden Drähte von den Nerven aus dem Inneren des Armstumpfes oder sogar aus dem Inneren des Gehirns an die Oberfläche des Gewebes zu einer Art Stecker führen, was jedoch ein erhebliches Infektionsrisiko darstellt. Daher entwickeln die Berliner Forscher ein drahtloses Array. Hundert nadelfeine Sensorspitzen werden dabei in das Gewebe gedrückt. Sendet nun eine Nervenzelle ein Signal in Form eines winzigen elektrischen Stromimpulses, können die Nadelspitzen diesen Stromfluss aufnehmen. Dazu benötigen sie einen direkten Kontakt zum sendenden Nerv im Gehirn oder am Nervenstrang.

Der Rest ist Mikroelektronik vom Feinsten: Die Spitzen leiten das Signal an einen winzigen Chip weiter. Dieser verstärkt das schwache Signal und sendet es nach außen. "Im Rahmen des ausgezeichneten Projekts werden die Sensorspitzen nun durch nanostrukturierte Elektroden ersetzt, wodurch das Interface noch winziger gestaltet werden kann", so Töpper. Gerade das mikroelektronische Packaging ist eine der Schlüsselkomponenten des Projekts, ermöglicht sie doch durch Verwendung spezieller Materialien wie Parylen überhaupt erst die Biokompatibilität des Gesamtsystems. "Die Integration von Mikroelektronik-Technologien z.B. auf dehnbaren Schaltungsträgern und die Mikrosystemtechnik werden weitere Potenziale für zukünftige Entwicklungen der Medizintechnik eröffnen."

Zum Verbund unter der Federführung der Neurologischen Uni-Klinik gehören das Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM in Berlin (Dr. Stefan Fiedler), die Technische Universität Berlin mit ihrem Forschungsschwerpunkt Mikroperipherik (Dr. Thomas Löher) und die Universität Rostock, Lehrstuhl für Biophysik (Institut für Biowissenschaften, Prof. Dr. Jan Gimsa). Prof. Dr. Hans Wolf vom Institut für Medizinische Mikrobiologie an der Universität Regensburg brachte die richtigen Leute zum richtigen Zeitpunkt in Kontakt.

Georg Weigelt | Fraunhofer Gesellschaft
Weitere Informationen:
http://www2.izm.fhg.de/Bilder/gehirn_computer_interface.zip
http://www.innovationsforum-medizintechnik.de/programm/wettbewerb.php
http://www.izm.fhg.de/news_events/news/index.jsp

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

nachricht 1,5 Mio. Euro für das Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW)
05.12.2016 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten