Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Projekt zur Erforschung von elektrischen und mechanischen Wechselwirkungen im Stromnetz bewilligt

07.01.2015

VolkswagenStiftung fördert AMSES mit einer Million Euro

Mit der Energiewende wird zunehmend Strom durch Windenergie- und Solarstromanlagen erzeugt. Als Folge liefern die klassischen großen, fossil befeuerten Kraftwerke immer weniger Strom. Die Komplexität der Stromnetze steigert sich weiter, wenn neben den regenerativen Energieerzeugungsanlagen die Stromnetze wie geplant ausgebaut werden und die Bestrebungen von Energieeffizienzmaßnahmen greifen.

Mit der Energiewende wird zunehmend Strom durch Windenergie- und Solarstromanlagen erzeugt. Als Folge liefern die klassischen großen, fossil befeuerten Kraftwerke immer weniger Strom. Die Komplexität der Stromnetze steigert sich weiter, wenn neben den regenerativen Energieerzeugungsanlagen die Stromnetze wie geplant ausgebaut werden und die Bestrebungen von Energieeffizienzmaßnahmen greifen.

In diesem Transformationsprozess wächst der Anteil an Komponenten, die über Umrichter an das Stromnetz angeschlossen sind. Umrichter, und auch Wechselrichter, sind elektronische Systeme, die ohne mechanische Komponenten Strom, Spannung und Frequenz von Strom verändern können. Sie finden sich in allen elektronischen Systemen, wenn Energie in Stromnetzen gewandelt wird. Bei einer Solarstromanlage wird beispielsweise aus Licht ein Gleichstrom erzeugt. Dieser Gleichstrom wird in Wechselstrom gewandelt, bevor er in das Stromnetz eingespeist werden kann.

Es wird erwartet, dass in Zukunft immer weniger große thermische Kraftwerke mit ihren rotierenden Turbinen, Generatoren und Schwungmassen benötigt werden. Wichtig für die Stabilität der Stromnetze sind aber aktuell deren große mechanische Schwungmassen. Sie wirken stabilisierend auf das Stromnetz, vergleichbar mit einem drehenden Kreisel, der sich wieder aufrichtet, wenn er aus seiner stabilen Lage ausgelenkt wird.

Doch wie verändern sich die Stabilitätseigenschaften des Stromnetzes, wenn es immer weniger rotierende Schwungmassen gibt? Und wie verändern sich dann die Ausgleichsvorgänge im Stromsystem mit seinen elektrischen, magnetischen und mechanischen Größen, die sehr unterschiedliche Änderungsgeschwindigkeiten und räumliche Ausdehnungen aufweisen.

An dieser Stelle setzt das Forschungsvorhaben AMSES (Aggregierte Modelle für die Simulation von dynamischen Vorgängen in elektromechanischen Energiesystemen) an, ein gemeinsames Forschungsprojekt koordiniert vom Institut für Energieversorgung und Hochspannungstechnik der Leibniz Universität Hannover mit dem Institut für Antriebssysteme und Leistungselektronik, Institut für Turbomaschinen und Fluiddynamik, Institut für Theoretische Elektrotechnik und dem Leibniz Forschungszentrum Energie 2050 (LiFE 2050). Projektstart ist der 1. Januar 2015.

Die VolkswagenStiftung hat rund eine Million Euro aus dem Niedersächsischen Vorab als Fördersumme für AMSES bewilligt. Die beteiligten Wissenschaftlerinnen und Wissenschaftler erforschen die dynamischen Wechselwirkungen von elektrischen und mechanischen Komponenten in Stromnetzen bei wachsendem Anteil von erneuerbaren Energieträgern aus Wind und Sonne. Das Konsortium verfolgt dabei das Ziel, die Eigenschaften der Komponenten des Stromsystems zu modellieren und mit Hilfe von Simulationen die dynamischen Vorgänge in elektromechanischen Energiesystemen der Zukunft zu analysieren. Dabei wollen die Forscherinnen und Forscher wissenschaftliche Grundlagen ermitteln, um mit Simulationswerkzeugen Hinweise auf Probleme zu identifizieren, bevor diese auftreten.

Prof. Dr.-Ing. habil. Lutz Hofmann, Koordinator des Projekts und Leiter des Instituts für Energieversorgung und Hochspannungstechnik: „Der weitere Zubau einer Vielzahl von dezentralen und volatil einspeisenden Wind- und Photovoltaikanlagen und die gleichzeitige Verdrängung der großen fossil befeuerten Kraftwerke führen zu einer immer größer werdenden Komplexität und Veränderung der bei Störungen im Elektroenergiesystem auftretenden dynamischen Ausgleichsvorgänge.

Eine zutreffende Simulation des dynamischen Verhaltens und eine darauf basierende Beurteilung der Stabilität des Gesamtsystems übersteigen den heutigen Stand der Forschung. Ziel von AMSES ist es, mit einem interdisziplinären Ansatz Lösungswege zur Simulation und Vorausberechnung von komplexen elektrisch-mechanischen Energiesystemen zu entwickeln, um Effekte und Wechselwirkungen, die erst aus der Interaktion der verschiedenen Betriebsmittel entstehen, in der Simulation vorauszuberechnen. Mit dieser Forschung leisten wir einen wichtigen Beitrag für die Energiewende. “

„Ich freue mich sehr, dass wir mit der Bewilligung von AMSES einen interdisziplinären Ansatz verfolgen können, um neue Lösungswege zur Simulation und Vorausberechnung von komplexen elektrisch-mechanischen Energiesystemen aufzuzeigen. Auf Grundlage der Erkenntnisse werden wir diese Zusammenarbeit auch auf weitere Fachgebiete ausdehnen können, beispielsweise auf das komplexe Zusammenspiel mit Windenergieanlagen. Dieses Projekt ist ein schöner Erfolg für die Zusammenarbeit in unserem Energieforschungszentrum“, sagt Prof. Dr.-Ing. Axel Mertens, Leiter des Institut für Antriebssysteme und Leistungselektronik sowie Sprecher des LiFE 2050.

LiFE 2050 ist eine Einrichtung der Leibniz Universität Hannover. Ziel ist, die Energieforschung an der Universität zu bündeln und die interdisziplinäre und transdisziplinäre Forschung zu unterstützen. Mit mehr als 300 Wissenschaftlern aus sechs Fakultäten bilden die 21 Mitgliedsinstitute in den Bereichen Windenergie, Solarenergie, thermische Kraftwerke, Stromnetze und Elektromobilität aktuell fünf Forschungslinien. Die Forschungslinie Stromnetze stellt dabei durch die Stromverteilung eine Art Verbindungsglied im LiFE 2050 dar. Durch AMSES wird die Forschung zur Beherrschung der Ausgleichsvorgänge im Stromnetz gestärkt.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Prof. Dr.-Ing. habil. Lutz Hofmann, Institut für Energieversorgung und Hochspannungstechnik der Leibniz Universität Hannover, unter Telefon +49 511 762 2263 oder per E-Mail unter hofmann@iee.uni-hannover.de gern zur Verfügung.

Mechtild Freiin v. Münchhausen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie