Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prof. Immanuel Bloch erhält den Senior BEC Award 2013

09.08.2013
Das Preiskomitee der Bose-Einstein-Konferenzen hat Prof. Immanuel Bloch, Direktor am Max-Planck-Institut für Quantenoptik (MPQ) und ordentlicher Professor für Experimentalphysik an der Ludwig-Maximilians-Universität München (LMU), mit dem Senior International BEC Award 2013 ausgezeichnet.

Damit werden Prof. Blochs „bahnbrechende experimentelle Beiträge zur Physik von Quanten-Vielteilchensystemen aus kalten Atomen in optischen Gittern“ gewürdigt. Seit der Entdeckung der Bose-Einstein-Kondensate – einer sehr speziellen und exotischen Form von Materie – im Jahr 1995 werden die BEC Konferenzen alle zwei Jahre an verschiedenen Orten abgehalten.

„Sie stellen einen Höhepunkt der Tagungen über die Physik ultrakalter Atome dar, da nahezu alle herausragenden auf diesem Gebiet forschenden Gruppen teilnehmen“, so Prof. Bloch. Die International BEC Awards werden seit 2011 vergeben. Diesjähriger Preisträger des Junior Preises ist Prof. Markus Greiner (Harvard Universität), der während seiner Doktorarbeit am MPQ forschte.

Die Bildung sogenannter Bose-Einstein-Kondensate wurde vor rund 90 Jahren von Albert Enstein und Satyendra Nath Bose vorhergesagt. Die Physiker beschrieben damit das statistische Verhalten identischer Quantenteilchen, die durch einen ganzzahligen Drehimpuls charakterisiert sind. Diese Bosonen bilden unterhalb einer (extrem niedrigen) kritischen Temperatur ein „Kondensat“, bei dem die einzelnen Teilchenwellen zu einer einzigen Materiewelle von fast makroskopischen Ausmaßen, rund 100 Mikrometern, verschmelzen. Erstmals realisiert wurde ein solches BEC im Jahr 1995 fast gleichzeitig in den USA von zwei verschiedenen Arbeitsgruppen, wofür Eric Cornell, Wolfgang Ketterle und Carl Wiemann 2001 den Nobelpreis für Physik erhielten.

„Heute ist das BEC ein Ausgangszustand, um neuartige Materieformen zu erzeugen“, erklärt Prof. Bloch. Und längst experimentieren Physiker nicht nur mit den verhältnismäßig handlichen Bosonen, sondern auch mit den schwerer zähmbaren Fermionen – Teilchen, die sich prinzipiell nicht im identischen Quantenzustand befinden dürfen.

Blochs Spezialität ist die Untersuchung ultrakalter Quantengase in Lichtkristallen aus Laserstrahlen, so genannten optischen Gittern. 2001 gelang es ihm, ein BEC, in dem sich die Teilchen wie in einer Supraflüssigkeit frei bewegen können, durch gezielte Wahl der Gitterparameter in einen Zustand zu überführen, in dem die einzelnen Atome auf ihre Gitterplätze gebannt sind – einen sogenannten Mott-Isolator. Mittlerweile können Bloch und seine Mitarbeiter die Atome einzeln sichtbar machen, direkt abbilden, adressieren und manipulieren.

So können diese Quanten-Vielteilchensysteme als Modelle für Festkörpersysteme dienen und helfen, Phänomene wie die Supraleitung besser zu verstehen. Die hohe Kontrollierbarkeit der Atome öffnet auch die Perspektive, die Teilchen einmal als Speicherbausteine für zukünftige Quantencomputer zu nutzen.

Für seine innovativen Forschungsarbeiten hat Prof. Bloch bereits eine Reihe hochangesehener Preise erhalten, z. B. gleich zweimal (2000 gemeinsam mit Prof. Hänsch, sowie 2007) den Philip Morris Forschungspreis. 2002 wurde ihm die Otto-Hahn-Medaille der Max-Planck-Gesellschaft, 2003 der Rudolf-Kaiser-Preis verliehen. Im Jahr 2005 wurde er mit dem Leibniz-Preis der Deutschen Forschungsgemeinschaft, dem Bundesverdienstorden und dem Preis der „International Commission of Optics“ ausgezeichnet.

2011 verlieh ihm die European Physical Society (EPS) den „2011 Prize for Fundamental Aspects of Quantum Electronics and Optics“, und erst in diesem Jahr bekam er den Hector Wissenschaftspreis 2012 sowie den Körber-Preis. Die BEC-Awards werden auf der nächsten BEC-Konferenz in Sant Feliu (Spanien), 7.-13. September 2013, verliehen werden. Olivia Meyer-Streng

Zur Person:
Immanuel Bloch, Jahrgang 1972, begann das Studium der Physik 1991 an der Friedrich-Wilhelms-Universität Bonn und schloss seine Diplomarbeit 1996 mit Auszeichnung ab. Nach einem einjährigen Forschungsaufenthalt an der Stanford-Universität stieß er 1998 zu der Abteilung Laserspektroskopie von Prof. Hänsch (LMU und MPQ). Im Jahr 2000 promovierte er an der LMU über das Thema „Atomlaser und Phasenkohärenz atomarer Bose-Einstein-Kondensate“ mit „summa cum laude“. Als wissenschaftlicher Assistent setzte er seine Forschungen an LMU und MPQ fort, bis er 2003 dem Ruf auf einen Lehrstuhl für Physik der Universität Mainz folgte. Seit 2008 ist Prof. Bloch Direktor am Max-Planck-Institut für Quantenoptik, an dem er die Abteilung „Quanten-Vielteilchensysteme“ leitet, seit 2009 hat er den Lehrstuhl für Quantenoptik an der Ludwig-Maximilians-Universität.
Kontakt:
Prof. Immanuel Bloch
Lehrstuhl für Physik, LMU München,
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
81479 Garching
Tel.: +49 (0)89 32905 -238
Fax: +49 (0)89 32905 -760
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht 31,5 Millionen Euro für Forschungsinstitute der Innovationsallianz Baden-Württemberg (InnBW)
20.04.2018 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht Der Herr der Magnetfelder: EU verleiht HZDR-Forscher begehrte Forschungsförderung in Millionenhöhe
12.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

31,5 Millionen Euro für Forschungsinstitute der Innovationsallianz Baden-Württemberg (InnBW)

20.04.2018 | Förderungen Preise

Krebs erfolgreich mit Fieber behandeln

20.04.2018 | Biowissenschaften Chemie

Von GeoFlow zu AtmoFlow

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics