Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Produzieren mit Lichtblitzen

02.10.2013
Jenaer Physiker Prof. Dr. Stefan Nolte für den Zukunftspreis 2013 nominiert

Die gemeinsame Arbeit von Bosch, TRUMPF und der Friedrich-Schiller-Universität Jena hat ultrakurze Laserpulse von einem Mittel der Forschung zum erfolgreichen Werkzeug der Serienproduktion gemacht. Mit der konzentrierten Energie des Lasers lassen sich inzwischen alle Werkstoffe schnell, präzise und in hoher Stückzahl wirtschaftlich bearbeiten. Grundlagenforschung und Entwicklung fanden in Deutschland statt. Auch die Produktion und neue Arbeitsplätze sind hier angesiedelt. Der wirtschaftliche Nutzen kommt zu großen Teilen in Deutschland zum Tragen.

Das höchst präzise Verfahren eröffnet vielen Branchen Wege zu neuen Produkten, die bislang nur äußerst schwierig oder gar nicht herzustellen waren. Viele sind bereits im Markt, darunter kraftstoffsparende Motoren und Heiztechniksysteme sowie besser verträgliche medizinische Implantate. Die immer dünner und fester werdenden Gläser von Smartphones lassen sich inzwischen kaum noch anders schneiden. Ultrakurzpulslaser beantworten zentrale Fragen der Fertigungstechnik, was besonders an Hochlohnstandorten die Wettbewerbsfähigkeit stärkt. Auch die Werkzeugmaschinenindustrie profitiert auf Dauer. Branchen wie die Automobilindustrie, die Halbleiterfertigung, Industrietechnik, Photovoltaik und Elektroindustrie – alle entwickeln neue Anwendungen mit Ultrakurzpulslasern.

Erfolgreiches Dreierteam ist nominiert

Ein beharrliches Dreierteam hat die Ultrakurzpulslaser in gemeinsamer Forschung zum robusten, zuverlässigen Werkzeug für den Einsatz in Werkhallen entwickelt. Grundlagen dafür wurden auch im Rahmen der BMBF-Projekte PRIMUS und PROMPTUS geschaffen. Prof. Dr. Stefan Nolte arbeitet an der Friedrich-Schiller-Universität sowie am Fraunhofer-Institut für Angewandte Optik und Feinmechanik in Jena. Er legte in den letzten beiden Jahrzehnten die wissenschaftlichen Grundlagen für die Bearbeitung fast aller Materialien mit den energiereichen, ultrakurzen Laserpulsen. „Ich habe v. a. die Wechselwirkung zwischen Laserstrahlung und Material untersucht“, erläutert der Jenaer Physiker und schwärmt: „Man kommt dabei in Regionen, die fern von allen Zuständen sind, die sonst auf der Erde erreicht werden“. Doch bereits bei seiner Grundlagenforschung hat er die Anwendung im Blick – und in Bosch und TRUMPF passende Partner gefunden. Als Innovationsführer für industrielle Laser entschied TRUMPF unter der fachlichen Leitung von Dr. Dirk Sutter, die Ultrakurzpulslaser-Technologie bis zur Industriereife voranzutreiben und bietet heute die industriell leistungsstärksten Ultrakurzpulslaser am Markt. Basierend auf den Arbeiten von Dr. Jens König zur produktiven Lasermikrobearbeitung setzt Bosch die Kraft des Lasers heute fein kontrolliert auf eigens entwickelter Fertigungs- und Systemtechnik in der industriellen Serienproduktion ein. Alle drei – Nolte, König, Sutter – sind für diese Leistungen gleichwertig für den Zukunftspreis 2013 nominiert.

„Wir sind sehr stolz auf diese Nominierung und entwickeln das riesige Potenzial dieser Technik ständig für neue Anwendungen weiter. Innovationen wie diese sichern unseren technischen Vorsprung am Standort Deutschland. Und sie schaffen neue Arbeitsplätze“, erklärt das dreiköpfige Team. „Diese Nominierung ist bereits eine Auszeichnung und damit ein Ansporn, meine Forschung noch intensiver weiterzubetreiben“, freut sich Stefan Nolte. Der 43-jährige Laserspezialist sieht in der Nominierung auch die Chance, „das vielfältige Thema der Ultrakurzpulslaser in der industriellen Massenfertigung einer breiten Öffentlichkeit näherzubringen“. Auch der Rektor der Jenaer Universität, Prof. Dr. Klaus Dicke, gratuliert dem Team aus Wissenschaft und Wirtschaft zur Nominierung. „Dass die Lichtstadt Jena durch Stefan Nolte erneut unter den Nominierten ist, zeigt, dass wir auf einem guten Weg sind und die Friedrich-Schiller-Universität mit ihrem Forschungsschwerpunkt Optik, Photonik und photonische Technologien die Weichen in die richtige Richtung gestellt hat.“ Der Rektor wird gemeinsam mit Prof. Nolte und den anderen Nominierten an der Festveranstaltung am 4. Dezember in Berlin teilnehmen, wo der Sieger des Zukunftspreises 2013 verkündet wird.

Die Technik

Trifft ein herkömmlicher Laserstrahl zum Beispiel auf Metall, wird es aufgeheizt, es schmilzt und verdampft teilweise. Das Verhalten von geschmolzenem Material ist aber nur schwer zu beherrschen. Oft führt das sowohl zu Gratbildung an den Rändern durch erstarrte Schmelze als auch zu Unebenheiten und damit zu verminderter Präzision. Zudem kann es durch Wärmeeintrag zu Belastungen im Material kommen. Auch daher können Toleranzen mitunter nicht eingehalten werden. Dann ist eine Nacharbeit erforderlich, was Zeit und Geld kostet. Besonders harte Materialien wie Diamant und Saphir lassen sich so gar nicht bearbeiten.

Ultrakurzpulslaser bieten die Lösung: Durch die geschickte Wahl von Pulsdauer, Pulsenergie und der richtigen Fokussierung wird das Material so schnell und so stark erhitzt, dass es ohne Schmelze verdampft. Das abgetragene Material wird abgesaugt, bevor es sich wieder auf dem Werkstück absetzen kann. So lassen sich feinste Bereiche in der Größe von nur wenigen Mikrometern strukturieren. Ein Spiegelsystem lenkt dafür hunderttausende Laserpulse pro Sekunde an die korrekte Stelle.

Ein großer Vorteil dieses Verfahrens ist, dass trotz der hoch konzentrierten Energie des Lasers kein Wärmeeintrag in das Material erfolgt. Die Ingenieure sprechen von „kalter Bearbeitung“. Ein plakatives Beispiel ist die Gravur feinster Strukturen auf einen Streichholzkopf, ohne dass er entflammt. In der industriellen Herstellung bei Bosch konzentrieren hierfür eigens entwickelte Fertigungsmaschinen und Systemtechnik den Laserstrahl auf winzige Bauteile und bohren mit hunderttausenden Laserpulsen mikroskopisch kleine Löcher, zum Beispiel für die Benzindirekteinspritzung. Das Material in der Umgebung ermüdet nicht und wird auch nicht spröde. Die Wärme-Einflusszone bei dieser Anwendung reicht weniger als einen Mikrometer (millionstel Meter) ins Material.

Gute Aussichten

Bosch beherrscht wie auch TRUMPF die Kunst, die Kraft des Lasers für die jeweilige Aufgabe bestmöglich zu bändigen. Einmal angepasst, erledigt der gebündelte Strahl seine Aufgabe sehr schnell. So werden bis Ende 2013 allein bei Bosch bereits 30 Millionen Bauteile an Kunden ausgeliefert, die an speziell entwickelten Fertigungsstraßen entstanden. Diese Zahl wird künftig weiter steigen. Unter anderem entstehen so die extrem feinen Spritzlöcher der Benzin-Direkteinspritzungen, was zur Treibstoffeinsparung von bis zu 20 Prozent beiträgt. Zudem forscht Bosch an Produkten, die durch diese Fertigung neue oder bessere Funktionen bekommen, und meldet Patente dazu an.

Bei TRUMPF sind Ultrakurzpulslasersysteme ein wesentlicher Wachstumsmotor. Hundertfach sind sie bereits im industriellen Einsatz. Dies kommt nicht von ungefähr: Strahlqualität und Stabilität gewährleistet TRUMPF durch eine patentierte Regelschleife. Da Strahlerzeugung und Strahlauskopplung unabhängig sind, kommen nur die eingestellten Parameter am Werkstück an. Das innovative und robuste Scheibenlaser-Konzept hat das Vertrauen für die weltweit ersten Großbestellungen von 100 Watt-Ultrakurzpulslasern geschaffen, Tendenz steigend. Auch in Jena wird an vielen weiteren Anwendungsmöglichkeiten geforscht. Diese reichen von der Photovoltaik bis hin zu chirurgischen Anwendungen in der Augenheilkunde.

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet
02.12.2016 | Universität zu Lübeck

nachricht Ohne erhöhtes Blutungsrisiko: Schlaganfall innovativ therapieren
02.12.2016 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie