Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Otto-Hahn-Preis 2013 an Professor Dr. Ferenc Krausz

07.08.2013
Die Stadt Frankfurt, die GDCh und die DPG ehren den Begründer der „Atto-Science“ am 20. November 2013 in der Paulskirche

Der mit 50.000 Euro dotierte und gemeinsam von der Stadt Frankfurt, der Gesellschaft Deutscher Chemiker (GDCh) und der Deutschen Physikalischen Gesellschaft (DPG) getragene Otto-Hahn-Preis wird in diesem Jahr am 20. November in der Frankfurter Paulskirche an Professor Dr. Ferenc Krausz, geschäftsführender Direktor des Max-Planck-Instituts für Quantenoptik in Garching und Leiter der Abteilung für Attosekunden- und Hochfeldphysik, verliehen.

Um die Bewegung von Elektronen in Atomen oder Molekülen direkt zu beobachten, benötigt man ultrakurze Laserlichtpulse, sog. Attosekundenpulse. Eine Attosekunde ist eine trillionstel Sekunde, also 0,000 000 000 000 000 001 Sekunden. Ferenc Krausz und seinem Forschungsteam ist es erstmals gelungen, Attosekunden-Pulse experimentell zu demonstrieren und mit diesen die interatomare Bewegung von Elektronen in Echtzeit wahrnehmbar zu machen.

Diese Ergebnisse markieren den Beginn der Attosekunden-Physik und damit einen Meilenstein in der Forschung. Krausz und seinen Mitarbeitern gelang in den letzten Jahren neben Filmaufnahmen der sehr schnellen Bewegung von Elektronen in Molekülen auch die Steuerung der Elektronen. Damit ist zum Beispiel die Kontrolle der optischen und elektrischen Eigenschaften von Dielektrika möglich und so rein optische Schaltkreise.

Die Vorarbeit für diesen Durchbruch leistete Krausz mit seinem Team in den 90er Jahren mit eine ganzen Reihe von Innovationen zur Weiterentwicklung der Femtosekunden Lasertechnologie bis an ihre ultimative Grenze – bis hin zu Lichtpulsen, die den überwiegenden Teil ihrer Energie in einer einzigen Schwingung des elektromagnetischen Felds tragen. Krausz' Gruppe konnte im Jahr 2001 erstmals einen Attosekunden-Lichtpuls (aus extrem ultraviolettem Licht) sowohl erzeugen als auch messen und wenig später damit auch die Bewegung von Elektronen auf subatomarer Skala in Echtzeit verfolgen. Die von Krausz und seinem Team demonstrierte Kontrolle der Wellenform von Femtosekundenpulsen und den daraus resultierenden reproduzierbaren Attosekundenpulsen erlaubten die Etablierung der Attosekunden-Messtechnik wie sie heute als technologische Basis für die experimentelle Attosekunden-Physik dient.

Ferenc Krausz hat seine akademische Ausbildung in Budapest und Wien absolviert. Im Jahr 2003 wurde er als Direktor an das Max-Planck-Institut für Quantenoptik in Garching berufen. 2004 übernahm er zudem den Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München. Krausz ist einer der beiden Sprecher des 2006 von ihm mitbegründeten Exzellenzclusters Munich Centre for Advanced Photonics (MAP).

Peter Genath | idw
Weitere Informationen:
http://www.dpg-physik.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

nachricht Krankheitserreger beim Reis blockieren
10.08.2017 | Heinrich-Heine-Universität Düsseldorf

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie