Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nobelpreis für Leuchtprotein

09.10.2008
Vielfältige Anwendungen in der Sicherheitsforschung

Für ihre Entdeckung eines grün fluoreszierenden Proteins in einer Qualle erhalten zwei amerikanische und ein japanischer Wissenschaftler den diesjährigen Nobelpreis für Chemie.

Dieses GFP-Protein wird nicht nur in der medizinischen Forschung angewandt, um biologische Prozesse sichtbar zu machen, sondern auch in der Pflanzenforschung. Für die Entwicklung der modernen Biowissenschaften sei die Entdeckung des GFP-Proteins und seiner Anwendungsmöglichkeiten "zwingend erforderlich" gewesen, begründete das Nobelkomitee in Stockholm seine Entscheidung.

Der Japaner Osamu Shimomura, einer der Preisträger, isolierte 1961 in der Qualle Aequorea victoria ein Protein, das bei ultraviolettem Licht grün fluoresziert. Die beiden amerikanischen Forscher Martin Chalfie und Roder Tsien fanden später heraus, dass sich dieses grün fluoreszierende Protein (GFP; green fluorescent protein) auf vielfältige Weise nutzen lässt, um die räumliche und zeitliche Verteilung eines bestimmten Proteins in Zellen oder Organismen direkt beobachten zu können. Wird das GFP-Gen mit dem Gen eines anderen Proteins gekoppelt, wirkt das GFP-Protein als Leuchtmarker für das andere, ansonsten unsichtbare Protein. Im Gegensatz zu anderen fluoreszierenden Proteinen benötigt das GFP-Protein keine weiteren Moleküle, um zu leuchten. Das UV-Licht reicht dazu aus. Zudem ist das GFP-Protein in nahezu allen Zellen nicht-toxisch und hat keine Auswirkungen auf die übrigen Vorgänge in der Zelle.

Vor allem in der Zellbiologie hat diese Markierungstechnik entscheiden dazu beigetragen, Vorgänge in der Zelle, wie den Transport oder die Regulation bestimmter Proteine erkennen zu können. In der medizinischen Forschung kann man damit etwa die Entwicklung von Nervenzellen oder das Wachstum von Krebszellen verfolgen.

Aber auch in der molekularen Pflanzenforschung wird die GFP-Technik vielfach eingesetzt, vor allem bei der Entwicklung neuer Verfahren zur Transformation von Pflanzen. In einigen BMBF-geförderten Projekten der biologischen Sicherheitsforschung wird das GFP-Gen als Testsystem genutzt, um rasch und ohne großen Aufwand erkennen zu können, ob die mit neuen Verfahren eingeführte DNA tatsächlich in der Pflanzenzelle aktiv ist und zur Bildung des entsprechenden Proteins führt. Das GFP-Protein kann aber auch als optischer Indikator signalisieren, wenn ein bestimmtes Gen erfolgreich entfernt wurde, etwa ein nicht gewünschtes Antibiotikaresistenz‑Markergen aus dem Genom herausgeschnitten werden soll.

Bei anderen Forschungsprojekten wurde mit Hilfe des angekoppelten GFP-Gen die räumliche Verteilung eines bestimmten Proteins in der Zelle oder der Pflanze visualisiert.

| Team bioSicherheit
Weitere Informationen:
http://www.biosicherheit.de
http://www.gmo-safety.eu
http://www.biosicherheit.de/de/aktuell/661.doku.html

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics