Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Materialien für Solarzellen: Physiker aus Halle an internationalem Forschungsprojekt beteiligt

09.01.2017

Silizium für Solarzellen könnte in Europa künftig knapp werden, deswegen braucht es eine Alternative: Neuartige Dünnschichtsolarzellen stehen im Zentrum des internationalen Forschungsprojekts "Starcell", an dem auch Physiker der Martin-Luther-Universität Halle-Wittenberg (MLU) mitarbeiten. Die Europäische Union (EU) fördert das Projekt, das unter Federführung des katalonischen Instituts für Energieforschung steht, für drei Jahre mit rund 4,8 Millionen Euro. Davon fließen rund 380.000 Euro an die MLU. Die Mittel stammen aus dem EU-Rahmenprogramm für Forschung und Innovation "Horizon 2020".

Seit einigen Jahren suchen Wissenschaftler nach alternativen Materialien für Solarzellen, die ungiftig und in großen Mengen verfügbar sind. Der Hintergrund: Die EU hat einen Katalog mit sogenannten kritischen Rohstoffen erstellt. Darin sind die Stoffe enthalten, die weltweit oder zumindest im EU-Raum künftig knapp werden könnten.

Auf der Liste stehen auch einige Elemente, die für die Herstellung von Solarzellen wichtig sind: Indium, Gallium, Tellur und sogar Silizium. Das Projekt "Starcell" hat deshalb das Ziel, eine Dünnschichtsolarzelle zu entwickeln, die aus ungiftigen und breit verfügbaren Alternativen besteht.

Eine entscheidende Rolle spielt dabei Kesterit, das seit den 2000er Jahren intensiv erforscht wird. Insgesamt 15 Forschungseinrichtungen und Universitäten aus Europa, Asien und den USA arbeiten gemeinsam in dem Millionenprojekt.

"In der Vergangenheit hat die Entwicklung neuer Solarzellen bis zur technologischen Anwendung mehrere Jahrzehnte gedauert", sagt Prof. Dr. Roland Scheer vom Institut für Physik der MLU. Seine Arbeitsgruppe erforscht seit Langem Kesterit als möglichen Baustoff für Solarzellen. Über die EU-Förderung sollen die Grundlagen geschaffen werden, um die Kesterit-Solarzellen schneller in den Markt einführen zu können.

Dafür müssten aber noch einige Hürden überwunden werden, wie Scheer sagt: "Der Laborwirkungsgrad dieser Solarzellen liegt derzeit bei 13 Prozent - das ist noch viel zu wenig für den industriellen Einsatz. Hier wären mindestens 18 Prozent nötig." Außerdem müssten die Materialeigenschaften des Stoffes noch weiter erforscht werden, um gezielte Veränderungen vornehmen zu können.

In der Fachgruppe Photovoltaik leisten Scheer und seine Mitarbeiter seit Jahren hoch angesehene Grundlagenforschung auf diesem Gebiet: Sie lassen Kesterit-Kristalle im Labor wachsen und untersuchen diesen Prozess mit modernen Röntgenmaschinen in Echtzeit. "Dadurch können wir den Kristallen beim Wachsen zuschauen", so Scheer weiter. Gleichzeitig lasse sich die Struktur und Zusammensetzung der Kristalle im Labor steuern, erforschen und so auch optimieren.

Außerdem sind die halleschen Wissenschaftler Experten auf dem Gebiet der Computer-gestützten Simulation von Bauelementen. Mit Hilfe dieser Simulationen können Änderungen in den Materialeigenschaften sowie im Bauelementdesign schon frühzeitig bewertet werden. So lässt sich überprüfen, ob sie eine Verbesserung des Wirkungsgrads mit sich bringen.

Tom Leonhardt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-halle.de

Weitere Berichte zu: Gallium Kesterit MLU Neue Materialien Silizium Solarzellen

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Verleihung GreenTec Awards 2018 – Kategorie »Energie« am 24. April 2018 auf der Hannover Messe
23.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht 31,5 Millionen Euro für Forschungsinstitute der Innovationsallianz Baden-Württemberg (InnBW)
20.04.2018 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics