Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Fingerabdrücke

16.02.2015

Alexander Schiller von der Universität Jena erhält Heisenberg-Stipendium der DFG

Es sei eine Ehrung seiner bisherigen Arbeiten und eine Möglichkeit für künftige Forschung – Prof. Dr. Alexander Schiller von der Universität Jena kann sich freuen: Der Juniorprofessor für Photonische Materialien hat von der Deutschen Forschungsgemeinschaft (DFG) gerade ein Heisenberg-Stipendium erhalten und wird damit in den nächsten drei Jahren gefördert mit einer Verlängerungsoption um zwei Jahre.


Jun.-Prof. Dr. Alexander Schiller von der Uni Jena mit dem Modell eines Zuckermoleküls. Der Chemiker wird von der Deutschen Forschungsgemeinschaft mit einem Heisenberg-Stipendium gefördert.

Foto: Jan-Peter Kasper/FSU

Mit dem renommierten Heisenberg-Stipendium ermöglicht die DFG Wissenschaftlerinnen und Wissenschaftlern, an einem hochkarätigen Forschungsprojekt zu arbeiten und sich so für einen Ruf an eine Hochschule weiter zu qualifizieren. Für sein jetzt gestartetes Projekt auf dem Gebiet der supramolekularen analytischen Chemie „Detektion und Differenzierung von Diolen mit fluorierten Benzenboronsäuren und 19F-NMR-Spektroskopie“ erhält Prof. Schiller überdies eine Sachbeihilfe. Insgesamt beläuft sich die Förderung auf 540.000 Euro.

„Ich gratuliere Alexander Schiller zu dieser herausragenden Auszeichnung und freue mich sehr, dass er sich entschieden hat, das Stipendium zu nutzen, um seine Arbeiten in Jena weiterzuführen. Das ist eine echte Bereicherung für die Wissenschaftsregion Jena“, so Prof. Dr. Ulrich S. Schubert, Dekan der Chemisch-Geowissenschaftlichen Fakultät der Universität Jena.

In seinem Forschungsprojekt plant Alexander Schiller mit seiner Arbeitsgruppe von fünf Doktoranden neuartige Zuckersensoren im wässrigen Medium zu entwickeln. „Dazu nutzen wir Boronsäure-Verbindungen als Sensormoleküle“, erläutert der Chemiker. Da die Sensormoleküle zusätzlich Fluor-Atome enthalten, lassen sie sich mit Hilfe der sogenannten 19F-NMR-Methode (Kernspinresonanzspektroskopie) untersuchen. Der Vorteil dieses Verfahrens: Mit wenigen Messungen lassen sich eine Vielzahl unterschiedlicher Zuckermoleküle und verwandte chemische Verbindungen nachweisen und quantifizieren.

„Jedes Zuckermolekül, das an den Sensor bindet, weist sein eigenes, ganz spezifisches Spektrum auf“, erläutert Heisenberg-Stipendiat Schiller. Die individuellen NMR-Signale möchte der Wissenschaftler nutzen, um für eine Vielzahl von Zuckern eine Art Fingerabdruck zu erstellen. „Unterschiedliche Zuckermoleküle, etwa Glukose oder Fruktose, haben spezifische Fingerabdrücke und sind somit einfach in Wasser zu unterscheiden.“ Diese Methode sei daher hervorragend geeignet, beispielsweise den Verlauf von Enzymreaktionen, bei denen Zuckermoleküle umgesetzt werden, zu beobachten.

Im Rahmen des Projekts werden Alexander Schiller und seine nationalen und internationalen Kooperationspartner zunächst neue fluorierte Boronsäure-Verbindungen synthetisieren und diese auf ihre spezifischen Fähigkeiten, Zuckermoleküle selektiv zu binden, testen. Anschließend sollen diese Sensormoleküle genutzt werden, um neue Enzym-Assays zu entwickeln.

Dabei möchte der Chemiker auch methodisch Neuland betreten: Die aus der Reaktion der Zuckermoleküle und des Sensors generierten „Fingerabdrücke“ plant er nicht nur als visuell erfassbares Spektrum, sondern auch akustisch darzustellen. „Jedem Mess-Signal wird ein definierter Ton zugeordnet“, erläutert der Forscher und Hobby-Pianist. „Dabei entsteht für jede Substanz ein spezifischer Klang, anhand dessen sich die Zuckermoleküle mit Hilfe des Gehörs unterscheiden lassen.“ Anwenden wollen die Wissenschaftler um Prof. Schiller ihre neuartigen Zuckersensoren beispielsweise, um mit Kollegen von der Freien Universität Berlin ein empfindliches Nachweissystem für Influenza-Viren zu etablieren.

Alexander Schiller wurde an der École Polytechnique Fédérale de Lausanne (EPFL) zum Thema „Biomimetische Katalyse von immobilisierten Übergangsmetallkomplexen“ promoviert. Nach einem Forschungsaufenthalt an der University of California, Santa Cruz und an der Eidgenössischen Materialprüfungs- und Forschungsanstalt (Empa) in St. Gallen erhielt er 2009 einen Ruf auf die Carl-Zeiss-Stiftungs-Juniorprofessur für Photonische Materialien an der Universität Jena. Schiller arbeitet in der DFG Forschergruppe 1738 „Häm und Hämabbauprodukte“ mit und ist Associate Editor der Zeitschrift „Reviews in Inorganic Chemistry“.

Kontakt:
Jun.-Prof. Dr. Alexander Schiller
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Humboldtstraße 8, 07743 Jena
Tel.: 03641 / 948113
E-Mail: alexander.schiller[at]uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics