Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Fingerabdrücke

16.02.2015

Alexander Schiller von der Universität Jena erhält Heisenberg-Stipendium der DFG

Es sei eine Ehrung seiner bisherigen Arbeiten und eine Möglichkeit für künftige Forschung – Prof. Dr. Alexander Schiller von der Universität Jena kann sich freuen: Der Juniorprofessor für Photonische Materialien hat von der Deutschen Forschungsgemeinschaft (DFG) gerade ein Heisenberg-Stipendium erhalten und wird damit in den nächsten drei Jahren gefördert mit einer Verlängerungsoption um zwei Jahre.


Jun.-Prof. Dr. Alexander Schiller von der Uni Jena mit dem Modell eines Zuckermoleküls. Der Chemiker wird von der Deutschen Forschungsgemeinschaft mit einem Heisenberg-Stipendium gefördert.

Foto: Jan-Peter Kasper/FSU

Mit dem renommierten Heisenberg-Stipendium ermöglicht die DFG Wissenschaftlerinnen und Wissenschaftlern, an einem hochkarätigen Forschungsprojekt zu arbeiten und sich so für einen Ruf an eine Hochschule weiter zu qualifizieren. Für sein jetzt gestartetes Projekt auf dem Gebiet der supramolekularen analytischen Chemie „Detektion und Differenzierung von Diolen mit fluorierten Benzenboronsäuren und 19F-NMR-Spektroskopie“ erhält Prof. Schiller überdies eine Sachbeihilfe. Insgesamt beläuft sich die Förderung auf 540.000 Euro.

„Ich gratuliere Alexander Schiller zu dieser herausragenden Auszeichnung und freue mich sehr, dass er sich entschieden hat, das Stipendium zu nutzen, um seine Arbeiten in Jena weiterzuführen. Das ist eine echte Bereicherung für die Wissenschaftsregion Jena“, so Prof. Dr. Ulrich S. Schubert, Dekan der Chemisch-Geowissenschaftlichen Fakultät der Universität Jena.

In seinem Forschungsprojekt plant Alexander Schiller mit seiner Arbeitsgruppe von fünf Doktoranden neuartige Zuckersensoren im wässrigen Medium zu entwickeln. „Dazu nutzen wir Boronsäure-Verbindungen als Sensormoleküle“, erläutert der Chemiker. Da die Sensormoleküle zusätzlich Fluor-Atome enthalten, lassen sie sich mit Hilfe der sogenannten 19F-NMR-Methode (Kernspinresonanzspektroskopie) untersuchen. Der Vorteil dieses Verfahrens: Mit wenigen Messungen lassen sich eine Vielzahl unterschiedlicher Zuckermoleküle und verwandte chemische Verbindungen nachweisen und quantifizieren.

„Jedes Zuckermolekül, das an den Sensor bindet, weist sein eigenes, ganz spezifisches Spektrum auf“, erläutert Heisenberg-Stipendiat Schiller. Die individuellen NMR-Signale möchte der Wissenschaftler nutzen, um für eine Vielzahl von Zuckern eine Art Fingerabdruck zu erstellen. „Unterschiedliche Zuckermoleküle, etwa Glukose oder Fruktose, haben spezifische Fingerabdrücke und sind somit einfach in Wasser zu unterscheiden.“ Diese Methode sei daher hervorragend geeignet, beispielsweise den Verlauf von Enzymreaktionen, bei denen Zuckermoleküle umgesetzt werden, zu beobachten.

Im Rahmen des Projekts werden Alexander Schiller und seine nationalen und internationalen Kooperationspartner zunächst neue fluorierte Boronsäure-Verbindungen synthetisieren und diese auf ihre spezifischen Fähigkeiten, Zuckermoleküle selektiv zu binden, testen. Anschließend sollen diese Sensormoleküle genutzt werden, um neue Enzym-Assays zu entwickeln.

Dabei möchte der Chemiker auch methodisch Neuland betreten: Die aus der Reaktion der Zuckermoleküle und des Sensors generierten „Fingerabdrücke“ plant er nicht nur als visuell erfassbares Spektrum, sondern auch akustisch darzustellen. „Jedem Mess-Signal wird ein definierter Ton zugeordnet“, erläutert der Forscher und Hobby-Pianist. „Dabei entsteht für jede Substanz ein spezifischer Klang, anhand dessen sich die Zuckermoleküle mit Hilfe des Gehörs unterscheiden lassen.“ Anwenden wollen die Wissenschaftler um Prof. Schiller ihre neuartigen Zuckersensoren beispielsweise, um mit Kollegen von der Freien Universität Berlin ein empfindliches Nachweissystem für Influenza-Viren zu etablieren.

Alexander Schiller wurde an der École Polytechnique Fédérale de Lausanne (EPFL) zum Thema „Biomimetische Katalyse von immobilisierten Übergangsmetallkomplexen“ promoviert. Nach einem Forschungsaufenthalt an der University of California, Santa Cruz und an der Eidgenössischen Materialprüfungs- und Forschungsanstalt (Empa) in St. Gallen erhielt er 2009 einen Ruf auf die Carl-Zeiss-Stiftungs-Juniorprofessur für Photonische Materialien an der Universität Jena. Schiller arbeitet in der DFG Forschergruppe 1738 „Häm und Hämabbauprodukte“ mit und ist Associate Editor der Zeitschrift „Reviews in Inorganic Chemistry“.

Kontakt:
Jun.-Prof. Dr. Alexander Schiller
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Humboldtstraße 8, 07743 Jena
Tel.: 03641 / 948113
E-Mail: alexander.schiller[at]uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen
22.03.2017 | Technische Universität Dresden

nachricht Effiziente Tools für bildgebende Studien
21.03.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen