Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methode zur Bewegungserkennung bewährt sich seit zehn Jahren

08.09.2014

– hohe Auszeichnung für Fraunhofer MEVIS-Informatiker

Nils Papenberg, Forscher am Fraunhofer-Institut für Bildgestützte Medizin MEVIS erhält eine der renommiertesten Auszeichnungen auf dem Feld des maschinellen Sehens. Gemeinsam mit drei Fachkollegen nimmt der 36-Jährige am 8. September in Zürich den Koenderink-Preis entgegen.

Die Auszeichnung wird auf der ”European Conference on Computer Vision“ (ECCV) verliehen, einer der wichtigsten Tagungen auf diesem Gebiet. Der Preis wird alle zwei Jahre vergeben und würdigt Fachveröffentlichungen, die vor einem Jahrzehnt publiziert wurden und sich als besonders wertvoll für Wissenschaft und Industrie erwiesen haben.

An der Universität Saarbrücken hatte Papenberg gemeinsam mit seinen Kollegen Thomas Brox, Andrés Bruhn und Joachim Weickert ein mathematisches Verfahren entwickelt, mit dem sich Bewegungen in Filmen und Bildfolgen genauer identifizieren lassen als zuvor.

Die Methode wurde von zahlreichen Forschern und Unternehmen aufgegriffen und findet sich heute unter anderem in Special-Effects-Computerprogrammen für die Filmindustrie. Auch die Medizin profitiert: In diversen Produkten hilft die Bewegungserkennung bei der Verschmelzung medizinischer Bilddaten. Außerdem wird das preisgekrönte Verfahren in weiterentwickelter Form in Forschungsprojekten von Fraunhofer MEVIS eingesetzt.

2004 hatte das Team seine neue Methode auf dem ECCV-Kongress vorgestellt. Die Fragestellung: Wie kann man einen Computer dazu bringen, eine Bewegung auf einer Bildfolge oder einem Film möglichst genau zu erkennen?

Als Testsequenz hatten sich die Forscher Szenen aus dem Straßenverkehr vorgenommen: Autos halten an einer Ampel und fahren wieder los – das eine schneller, das andere langsamer, manche biegen in eine andere Richtung ab. Ältere Verfahren hatten die Autos auf der Basis einer einzigen Kenngröße verfolgt – die Helligkeit der Objekte im Bild, der sogenannte Grauwert.

Papenberg und seine Kollegen nahmen eine weitere Kenngröße hinzu: Zusätzlich zum Grauwert orientierte sich ihr Verfahren an bestimmten Kanten der Autos und verfolgte deren Bewegung über verschiedene, aufeinander folgende Bilder.

Das Resultat: Durch die zusätzliche Klassifikation konnte der Algorithmus die Bewegungen doppelt so genau erkennen wie zuvor die älteren Verfahren – dies betraf besonders die Bewegungsrichtung der Autos. Für die Fachwelt beeindruckend:

Viele Experten hatten das Erreichen einer solchen Genauigkeit für unmöglich gehalten. Zusätzlich konnten die Wissenschaftler eine Theorie für ein bestehendes Verfahrung zur Bewegungserkennung beschreiben und damit untermauern. Papenberg und seine Kollegen konnten erstmals mathematisch exakt beweisen, warum dieser als Warping bezeichnete Ansatz funktioniert und sinnvoll ist.

Im Laufe der letzten zehn Jahre wurde die Arbeit nahezu 1200 Mal in den Fachaufsätzen anderer Wissenschaftler zitiert – ein Wert, der die Bedeutung des Verfahrens für die Fachwelt beweist. Inzwischen haben es mehrere Forschergruppen weiterentwickelt und in verschiedenste Anwendungen überführt. In Special-Effects-Software hilft der Algorithmus, Szenen in Zeitlupe oder aber deutlich rasanter erscheinen zu lassen.

Nils Papenberg wechselte 2004 aus Saarbrücken an die Universität zu Lübeck und 2009 in die Fraunhofer MEVIS Projektgruppe Bildregistrierung. Das Spezialistenteam aus Mathematikern und Informatikern erforscht Verfahren zur Fusion medizinischer Bilder und entwickelt die nun preisgekrönte Methode für medizinische Anwendungen weiter.

Unter anderem findet sie sich in einer Software, die die Bilder zweier Diagnoseverfahren (CT und PET) verschmilzt. Bei der Implantation von Gehirnschrittmachern unterstützt sie die Fusionierung von CT- und MR-Aufnahmen. Dadurch kann der Chirurg sowohl Knochen und Schrittmacher als auch das Gehirngewebe deutlich auf einem Bildschirm erkennen.

Bei Verdacht auf Brustkrebs könnten Gewebeproben künftig schonender entnommen werden, indem man die Biopsienadel per Ultraschall verfolgt. Dabei hilft das Verfahren bei der präzisen Lokalisierung. Und auch für die Tumortherapie mit Teilchen- oder Röntgenstrahlen scheint der Algorithmus interessant: Sitzt der Tumor in oder an einem sich bewegenden Organ, können sich die Strahlen so der Bewegung nachführen lassen, dass sie das Geschwür präzise treffen und das umliegende gesunde Gewebe weitgehend schonen.

Weitere Informationen:

http://www.mevis.fraunhofer.de/aktuelles/presseinformation/article/methode-zur-b...

Bianka Hofmann | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hologramm für Moleküle

26.09.2017 | Biowissenschaften Chemie

Das Motorprotein tanzt in unseren Zellen

26.09.2017 | Biowissenschaften Chemie

Tauben beim Multitasking besser als Menschen

26.09.2017 | Biowissenschaften Chemie