Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Mess-Minimalist: Bonner Mathematiker erhält ERC Starting Grant

20.10.2010
Professor Dr. Holger Rauhut kann sich freuen: Das „European Research Council“ (ERC) hat ihm Fördergelder für ein anspruchsvolles Forschungsvorhaben zugesagt.

Rund eine Millionen Euro fließen in den nächsten fünf Jahren an den Mathematiker der Universität Bonn. Mit den Mitteln dieses „ERC Starting Grants“ möchte er unter anderem nach neuen Möglichkeiten suchen, aus minimal wenigen Messwerten komplexe Daten zu rekonstruieren. Davon könnten beispielsweise medizinische Tomographieverfahren oder Radarsysteme profitieren.

Digitalkameras mit 10, 12, 16 Megapixeln? Völlig überholt! An der Rice-University im texanischen Houston haben Physiker vor vier Jahren eine Kamera konstruiert, die mit einem einzigen Pixel auskommt. Das Spannende daran: Sie schießt damit erstaunlich scharfe Bilder (Beispiele gibt es unter http://dsp.rice.edu/cscamera). Die US-Forscher arbeiten auf einem Forschungsgebiet, das unter Mathematikern momentan en Vogue ist wie kaum ein zweites: dem „Compressive Sensing“. Der Begriff bezeichnet die Kunst, aus möglichst wenigen Messpunkten ein möglichst exaktes Bild der Realität zu rekonstruieren.

Professor Dr. Holger Rauhut hat Algorithmen entwickelt, die das ziemlich gut können. Er sitzt in seinem Eckbüro im vierten Stock des Bonner Hausdorff-Zentrums für Mathematik und holt mit ein paar Mausklicks ein Beispiel auf den Bildschirm: Ein kompliziertes Tonfrequenzspektrum, das er aus nur 25 Messwerten exakt rekonstruieren konnte. „Normalerweise misst man erst und komprimiert die gewonnenen Daten danach“, sagt er. „Wir versuchen dagegen, direkt ‚komprimiert’ zu messen.“

Weniger messen anstatt viel wegwerfen

Kameras beispielsweise speichern ihre Fotos meist als jpg-Dateien. Dabei werfen sie 90 Prozent der aufgezeichneten Informationen einfach weg. Die Unterschiede zum Original sind dennoch kaum wahrnehmbar: Jedes Foto hat Bereiche, die fast keine Informationen enthalten - farbige Flächen wie den blauen Himmel zum Beispiel. Man könnte stattdessen auch einfach nur zehn Prozent der Daten aufzeichnen. Genau so funktioniert die Kamera der Rice-Universität: Sie macht nicht ein Einzelfoto, das sich aus zehn Millionen Punkten zusammensetzt. Stattdessen nimmt sie hintereinander einige tausend Ein-Pixel-Fotos auf. Daraus rekonstruiert sie dann das Originalbild.

Und zwar nicht etwa, indem sie zwischen den Einzelaufnahmen interpoliert. Das Ganze funktioniert nach einem komplett anderen Prinzip: Das Bild wird über tausende von Mikrospiegeln auf eine lichtempfindliche Fotodiode gebündelt. Dabei schaltet die Software jedoch einen Teil der Spiegel blind. Wie viele und welche, wechselt von Aufnahme zu Aufnahme nach dem Zufallsprinzip. Damit variiert auch die Lichtmenge, die der Pixelsensor empfängt. Aus dieser Variation und der Information, welche der Mikrospiegel zum jeweiligen Aufnahmezeitpunkt blind waren, lässt sich das Originalbild rekonstruieren. Das klappt umso besser, je mehr Messungen der Algorithmus auswerten kann.

Die Ein-Pixel-Kamera ist der Beweis, dass Compressive Sensing bei der Aufnahme von Bildern überhaupt funktioniert. Für herkömmliche Digitalknipsen ist sie dagegen keine Konkurrenz: Sie benötigt für ein einziges Foto aus mehreren tausend Einzelaufnahmen einige Minuten. Das reicht, um eine Eiche bei Windstille zu fotografieren. Doch schon vor dem Sonntagsausflug einer Schnecke muss das Gerät kapitulieren. „Compressive Sensing lohnt sich vor allem, wenn der Messprozess sonst sehr lange dauern würde oder mit hohen Kosten verbunden wäre“, erklärt Professor Rauhut. So soll beispielsweise eine Tomographie nicht zu lange dauern, da der Aufenthalt in der engen „Röhre“ viele Patienten belastet. Auch wenn für die Erfassung und Komprimierung der Daten vor Ort wenig Rechenleistung zur Verfügung steht, ist es besser, wenn nur wenige Messwerte anfallen.

High Risk, high gain

„Ich werde mit den ERC-Geldern keine Kamera bauen“, betont Rauhut. „Mich interessiert vor allem die Mathematik, die dem ‚Compressive Sensing’ zugrunde liegt. Ein Kernpunkt dabei ist der mathematische Beweis, unter welchen Bedingungen und wie effizient diese Verfahren funktionieren.“ Der 36-Jährige möchte die bestehenden Algorithmen weiter entwickeln, so dass sie sich beispielsweise auch auf Radarsysteme anwenden lassen. Außerdem will er das Prinzip auf völlig andere Bereiche ausdehnen. Ein Beispiel sind mathematische Funktionen mit sehr vielen Variablen. „Ich möchte versuchen, darunter die wenigen wirklich wichtigen Parameter zu identifizieren, ohne viel über die Funktion als solche wissen zu müssen“, sagt er. Derartige komplexe Funktionen treten beispielsweise in der Wettervorhersage oder bei ökonomischen Simulationen auf.

Mathematisch sind das sehr anspruchsvolle Themen - nicht umsonst fördert das ERC vor allem so genannte „High Risk, high gain“-Projekte. Rauhut wird diese Aufgabe allerdings nicht alleine schultern: Er will mit der Fördermillion aus Brüssel für die kommenden fünf Jahre einen Postdoktoranden und zwei Doktoranden finanzieren.

Kontakt:
Prof. Dr. Holger Rauhut
Hausdorff-Zentrum für Mathematik und Institut für Numerische Simulation
Telefon: 0228/73-62245
E-Mail: rauhut@hcm.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie